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Preface

Greetings,

This guide is based on SC482: Statistical Inference, taught by Professor
Liam O’Brien. The guide consists of lecture notes and material from Introduc-
tion to Mathematical Statistics, 8th edition by Hogg, McKean, and Craig. A
majority of the text will be reading notes and solutions to selected problems.

As this is intended only to be a reference source, I might not be as meticu-
lous with my explanations as I have been in some other guides.

Enjoy!
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1.1 The Binomial and Related Distributions

If we let the random variable X equal the number of observed successes in n
independent Bernoulli trials, each with success probability of p, then X follows
the binomial distribution.s

A binomial pmf is given by

p(x) =

{(
n
x

)
px(1− p)n−x x = 0, 1, 2, . . .

0, else
(1.1)

Using the binomial expansion formula, we can easily check that∑
x

p(x) = 1 (1.2)

The mgf of a binomial distribution is obtained by:

Mbin(t) = E[etx] =
∑
x

etxp(x) =
[
(1− p) + pet

]n ∀t ∈ R (1.3)

With this, we can find the mean and variance for p(x):

µ = M ′(0) = n, σ2 = M ′′(0) = np(1− p) (1.4)

Theorem 1.1.1. Let X1, X2, . . . , Xm be independent binomial random vari-
ables such that Xi ∼ bin(ni, p), i = 1, 2, . . . ,m. Then

Y =

m∑
i=1

Xi ∼ bin

(
m∑
i=1

ni, p

)
(1.5)

Proof: We prove this via the mgf for Y . By independence, we have that

MY (t) =

m∏
i=1

(1− p+ pet)ni = (1− p+ pet)
∑m
i=1 ni (1.6)

The mgf completely determines the distribution which Y follows, so we’re done.

1.1.1 Negative Binomial & Geometric Distribution

Consider a sequence of independent Bernoulli trials with constant probability p
of success. The random variable Y which denotes the total number of failures
in this sequence before the rth success follows the negative binomial distribution.
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A negative binomial pmf is given by

pY (t) =

{(
(y+r−1)
r−1

)
pr(1− p)y y = 0, 1, 2, . . .

0, else
(1.7)

The mgf of this distribution is

M(t) = pr[1− (1− p)et]−r (1.8)

When r = 1, Y follows the geometric distribution, whose pmf is given by

pY (y) = p(1− p)y, y = 0, 1, 2, . . . (1.9)

The mgf of this distribution is

M(t) = p[1− (1− p)et]−1 (1.10)

1.2 Multinomial Distribution

We won’t worry about this for now.

1.3 Hypergeometric Distribution

We won’t worry about this for now.

1.4 The Poisson Distribution

The Poisson distribution gives the probability of observing x occurrences of
some rare events characterized by rate λ > 0. The pmf is given by

p(x) =

{
λxe−λ

x! , x = 0, 1, 2, . . .

0, else
(1.11)

We say a random parameter with the pmf of the form of p(x) follows the Poisson
distribution with parameter λ.

The mgf of a Poisson distribution is given by

M(t) = e−λ(et−1) (1.12)

From here, we can find the mean and variance:

µ = M ′(0) = λ, σ2 = M ′′(0) = λ (1.13)
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Theorem 1.4.1. If X1, . . . , Xn are independent random variables, each Xi ∼
Poi(λi), then

Y =

n∑
i=1

Xi ∼ Poi

(
n∑
i=1

λi

)
(1.14)

Proof: We once again prove this via the mgf of Y :

MY (t) =

n∏
i=1

eλi(e
t−1) = e

∑n
i=1 λi(e

t−1) (1.15)

1.5 The Γ, χ2, β distributions

The gamma function of α > 0 is given by

Γ(α) =

ˆ ∞
0

yα−1e−y dy, (1.16)

which gives Γ(1) = 1 and Γ(α) = (α− 1)Γ(α− 1).

1.5.1 The Γ and exponential distribution

A continuous random variable X ∼ Γ(α, β) where α > 0 and β > 0 whenever
its pdf is

f(x) =

{
1

Γ(α)βαx
α−1e−x/β , 0 < x <∞

0, else
(1.17)

The mgf for X is obtained via the change of variable y = x(1 − βt)/β, where
t < 1/β:

M(t) =

ˆ ∞
0

1

Γ(α)βα
xα−1e−x(1−βt)/β dx =

1

(1− βt)α
(1.18)

From here, we can find the mean and variance:

µ = M ′(0) = αβ, σ2 = αβ2 (1.19)

The Γ(1, β) distribution is a special case, and it is called the exponential
distribution with parameter 1/β.
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Theorem 1.5.1. Let X1, . . . , Xn be independent random variables, with Xi ∼
Γ(αi, β). Then

Y =

n∑
i=1

Xi ∼ Γ

(
n∑
i=1

αi, β

)
(1.20)

Proof: Can you guess via which device we prove the statement above?

1.5.2 The χ2 distribution

The χ2 distribution is a special case of the gamma distribution where α =
r/2, r ∈ N∗ and β = 2. If a continuous r.v. X ∼ χ2(r) then its pdf is

f(x) =

{
1

Γ(r/2)2r/2
xr/2−1e−x/2, 0 < x <∞

0, else
(1.21)

Its mgf is

M(t) = (1− 2t)−r/2, t <
1

2
(1.22)

Theorem 1.5.2. Let X ∼ χ2(r) and k > −r/2 be given. Then E[Xk] exists
and is given by

E[Xk] =
2kΓ (r/2 + k)

Γ(r/2)
(1.23)

Proof: is proof is purey computational and is left to the reader.

From here, we note that all moments of the χ2 distribution exist.

Theorem 1.5.3. Let X1, . . . , Xn be r.v. with Xi ∼ χ2(ri). Then

Y =

n∑
i=1

Xi ∼ χ2

(
n∑
i=1

ri

)
(1.24)

Proof: we once again find the mgf for Y .

1.5.3 The β distribution

The β distribution differs from the other continuous ones we’ve discussed so far
because its support are bounded intervals.
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I will skip most of the details here, except mentioning that we can derive the
beta distribution from the a pair of independent Γ random variables. Suppose
Y = X1/(X1 + X2) where Xi ∼ Γ(α, β) then the pdf of Y is that of the beta
distribution:

g(y) =

{
Γ(α+β)

Γ(α)Γ(β)y
α−1(1− y)β−1, 0 < y < 1

0, else
(1.25)

The mean and variance of Y are

µ =
α

α+ β
, σ2 =

αβ

(α+ β + 1)(α+ β)2
(1.26)

1.6 The Normal distribution

I have dedicated a large chunk in the QFT notes to evaluating Gaussian inte-
grals, so I won’t go into that here.

X ∼ N (µ, σ2) whenever its pdf is

f(x) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
, −∞ < x <∞ (1.27)

where µ and σ2 are the mean and variance of X, respectively.

The mgf of X is can be obtained via the substitution X = σZ + µ:

M(t) = exp

(
µt+

1

2
σ2t2

)
(1.28)

We note the following correspondence for X = σZ + µ:

X ∼ N (µ, σ2) ⇐⇒ Z ∼ N (0, 1) (1.29)

Theorem 1.6.1. X ∼ N (µ, σ2) =⇒ V = (X − µ)2/σ2 ∼ χ2(1), i.e. a
standardized, squared normal follows a chi-square distribution.

Proof: The proof isn’t too hard. Let us write V as W 2 and so W ∼ N (0, 1).
We consider the cdf G(v) for V , with v ≥ 0:

G(v) = P (W 2 ≤ v) = P (−
√
v ≤W ≤

√
v) = 2

ˆ √v
0

1√
2π
e−w

2/2 dw (1.30)

with G(v) = 0 whenever v < 0. From here, we can see that the pdf for v, under
the change of notation w → √y, is

g(v) = G′(v) =
d

dv

{ˆ v

0

1√
2π
√
y
e−y/2 dy

}
, 0 ≥ v (1.31)

https://huanqbui.com/LaTeX projects/HuanBui_QM/HuanBui_QM.pdf
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or 0 otherwise. This means

g(v) =

{
1√
π
√

2
v1/2−1e−v/2, 0 < v <∞

0, else
(1.32)

Using the fact that Γ(1/2) =
√
π and by verifying that g(v) integrates to unity

we show V ∼ χ2(1).

Theorem 1.6.2. Let X1, . . . , Xn be independent r.v. with Xi ∼ N (µi, σ
2
i ).

Then for constants a1, . . . , an

Y =

n∑
i=1

aiXi ∼ N

(
n∑
i=1

aiµi,

n∑
i=1

a2
iσ

2
i

)
(1.33)

Proof: We once again prove this kind of theorems via the mgf for Y :

M(t) =

n∏
i=1

exp

(
taiµi +

1

2
a2
iσ

2
i

)

= exp

{
t

n∑
i=1

aiµi +
1

2
t2

n∑
i=1

a2
iσ

2
i

}
(1.34)

which is the mgf for the normal with the corresponding mean and variance
above.

Corollary: Let X1, . . . , Xn ∼ N (µ, σ2). Then

X̄ =

∑n
i=1Xi

n
∼ N

(
µ, σ2/n

)
(1.35)

Proof: the proof is left to the reader.

1.6.1 Contaminated Normal

We won’t worry about this for now.

1.7 The Multivariate Normal

I’ll just jump straight to the n-dimensional generalization. Evaluations of high-
dimensional Gaussian integrals and moments can also be found in the QFT
notes.

https://huanqbui.com/LaTeX projects/HuanBui_QM/HuanBui_QM.pdf
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We say an n-dimensional random vector X has a multivariate normal distri-
bution if its mgf is

MX(t) = exp

(
t>µ+

1

2
t>Σt

)
(1.36)

for all t ∈ Rn, where Σ is a symmetric, positive semi-definite matrix and µ ∈ Rn.
For short, we say X ∼ Nn(µ,Σ).

Theorem 1.7.1. Suppose X ∼ Nn(µ,Σ) where Σ is positive definite. Then

Y = (X− µ)>Σ−1(X− µ) ∼ χ2(1) (1.37)

Theorem 1.7.2. If X ∼ Nn(µ,Σ) then

Y = AX + b ∼ Nn(Aµ+ b) (1.38)

Proof: The proof once again uses the mgf for Y, but also some linear algebra
manipulations.

There are many other theorems and results related to this topic, but I won’t
go into them for now.

1.8 The t- and F -distributions

These two distributions are useful in certain problems in statistical inference.

1.8.1 The t-distribution

Suppose W ∼ N (0, 1) and V ∼ χ2(r) and that they are independent. Then the
joint pdf of W and V , called h(w, v), is the product of the pdf’s of W and V :

h(w, v) =

{
1√
2π
e−w

2/2 1
Γ(r/2)2r/2

vr/2−1e−v/2, w ∈ R, v > 0

0, else
(1.39)

Now we define a new variable T = W/
√
V/r and consider the transformation:

t =
w√
v/r

u = v (1.40)

which bijectively maps the parameter space (w, v) = R×R+ to (t, u) = R×R+.
The absolute value of the Jacobian of the transformation is given by

|J | =
∣∣∣∣det

(
∂tw ∂uw
∂tv ∂uv

)∣∣∣∣ =

√
u√
r
. (1.41)
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With this, the joint pdf of T and U ≡ V is given by

g(t, u) = |J |h
(
t
√
u√
r
, u

)
=

{
ur/2−1

√
2πΓ(r/2)2r/2

exp
[
−u2

(
1 + t2

r

)] √
u√
r
, t ∈ R, u ∈ R+

0, else

(1.42)

By integrating out u we obtain the marginal pdf for T :

g1(t) =

ˆ ∞
−∞

g(t, u) du

=

ˆ ∞
0

u(r+1)/2−1

√
2πrΓ(r/2)2r/2

exp

[
−u

2

(
1 +

t2

r

)]
du. (1.43)

Via the substitution z = u[1 + (t2/r)]/2 we can evaluate the integral to find for
t ∈ R

g1(t) =
Γ[(r + 1)/2]√
πrΓ(r/2)

1

(1 + t2/r)(r+1/2)
(1.44)

A r.v. T with this pdf is said to follow the t-distribution (or the Student’s
t-distribution) with r degrees of freedom. The t-distribution is symmetric about
0 and has a unique maximum at 0. As r ∈ ∞, the t-distribution converges to
N (0, 1).

The mean of T ∼ Stu(r) is zero. The variance can be found to be Var(T ) =
E[T 2] = r

r−2 , so long as r > 2.

1.8.2 The F -distribution

Let U ∼ χ2(r− 1), V ∼ χ2(r2) be given. Then the joint pdf of U and V is once
again the product of their pdf’s:

h(u, v) =

{
1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2u
r1/2−1vr2/2−1e−(u+v)/2, u, v ∈ R+

0, else

(1.45)

Define the new random variable

W =
U/r1

V/r2
(1.46)

whose pdf g1(w) we are interested in finding. Consider the transformation

w =
u/r1

v/r2
, z = v (1.47)
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which bijectively maps (u, v) = R+×R+ → (w, z) = [R+×R+]. Like last time,
the absolute value of the Jacobian can be found to be

|J | = r1

r2
z. (1.48)

The joint pdf g(w, z) of the random variables W and Z = V is obtained from
by scaling h(u, v) by |J | and applying the variable transformation:

g(w, z) =
1

Γ(r1/2)Γ(r2/2)2
r1+r2

2

(
r1zw

r2

) r1−2
2

z
r2−2

2 exp

[
−z

2

(
r1w

r2
+ 1

)]
r1z

r2

(1.49)

so long as (w, z) ∈ R+ × R+ and 0 otherwise. We then proceed to find the
marginal pdf g1(w) of W by integrating out z. By considering the change of
variables:

y =
z

2

(
r1w

r2
+ 1

)
(1.50)

we can evaluate the integral and find the marginal pdf of W to be

g1(w) =

{
Γ[(r1+r2)/2](r1/r2)r1/2

Γ(r1/2)Γ(r2/2)
wr1/2−1

(1+r1w/r2)(r1+r2)/2 , w ∈ R+

0, else
(1.51)

W , which is the ratio of two independent chi-quare variables U, V , is said to
follow an F -distribution with degrees of freedom r1 and r2. We call the ratio
W = (U/r1)/(V/r2) the “F” ratio.

The mean of W is E[F ] = r2
r2−2 . When r2 is large, E[F ]→ 1.

1.8.3 The Student’s Theorem

Here we will create the connection between the normal distribution and the
t-distribution. This is an important result for the later topics on inference for
normal random variables.

Theorem 1.8.1. Let X1, . . . , Xn be iid r.v. with Xi ∼ N (µ, σ2)∀i. Define the
r.v.’s

X̄ =
1

n

n∑
i=1

Xi (1.52)

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2. (1.53)

Then
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(a) X̄ ∼ N (µ, σ2/n).

(b) X̄ and S2 are independent.

(c) (n− 1)S2/σ2 ∼ χ2(n− 1).

(d) The variable T̄ = (X̄ − µ)/(S/
√
n) follows the Student’s t-distribution

with n− 1 degrees of freedom.

T̄ =
X̄ − µ
S/
√
n
∼ Stu(n− 1). (1.54)

Proof: The proof is good, so I will reproduce it here. Because Xi ∼ N (µ, σ2)∀i,
X ∼ Nn

(
µ1, σ21

)
, where 1 denotes the n-vector whose components are all 1.

Now, consider v> = (1/n)1>. We see that X̄ = v>X. Define the random
vector Y = (X1 − X̄, . . . , X2 − X̄)> and consider the (true) equality:

W =

(
X̄
Y

)
=

(
v>

I− 1v>

)
︸ ︷︷ ︸

the transformation

X (1.55)

which just restates our definitions nicely. We see that W is a result of a linear
transformation of multivariate normal random vector, and so it follows that
W ∼ Nn+1 with mean

E[W] =

(
v>

I− 1v>

)
µ1 =

(
µ
0n

)
(1.56)

and the covariance matrix

Σ =

(
v>

I− 1v>

)
σ2I

(
v>

I− 1v>

)>
= σ2

(
1
n 0>n
0n I− 1v>

)
(1.57)

From here, part (a) is proven. Next, observe that Σ is diagonal, and so
all covariances are zero. This means X̄ is independent of Y. But because
S2 = (n− 1)−1Y>Y, X̄ is independent of S2 as well. So, (b) is proven.

Now, consider the r.v.

V =

n∑
i=1

(
Xi − µ
σ

)2

(1.58)

Each summand of V is a square of an N (0, 1) r.v., and so each follows a χ2(1).
Because V is a sum of squares of n such χ2(1)’s, V ∼ χ2(n). Next, we can
rewrite V as

V =

n∑
i=1

(
(Xi − X̄) + (X̄ − µ)

σ

)2

=
(n− 1)S2

σ2
+

(
X̄ − µ
σ/
√
n

)2

. (1.59)
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By (b), the summands in the last equation is are independent. The second term
is a square of a N (0, 1), so it follows a χ2(1). Taking mgfs of both sides, we get

(1− 2t)−n/2 = E[exp
{
t(n− 1)S2/σ2

}
]︸ ︷︷ ︸

M(c)

(1− 2t)−1/2. (1.60)

Solving for the mgf of (n− 1)S2/σ2 we get part (c). Finally, writing T as

T =
(X̄ − µ)/(σ/

√
n)√

(n− 1)S2/(σ2(n− 1))
(1.61)

and using (a)-(c) gives us (d). Hint : consider what distributions the numerator
and denominator of T follow.
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2.1 Sampling & Statistics

In statistical inferences, our ignorance about the pdf/pmf of a random variable
X can be classified in two ways:

• The pdf/pmf is unknown.

• The pdf/pmf is assumed/known but its parameter vector θ is not.

We consider the second class of classification for now.

Definition: If the random variables X1, X2, . . . , Xn are iid, then these random
variables constitute a random sample of size n from the common distribution.

Definition: Let X1, . . . , Xn denote a sample on a random variable X. Let
T = T (X1, . . . , Xn) be a function of the sample. Then T is called a statistic.

2.1.1 Point estimators

Definition: (Unbiasedness) Let X1, . . . , Xn denote a sample on a random vari-
able X with pdf f(x; θ), θ ∈ Ω. Let T = T (X1, . . . , Xn) be a statistic. We say
that T is an unbiased estimator of θ if E[T ] = θ.

We now introduce the concept of the maximum likelihood estimator
(mle). The information in the sample and the parameter θ are involved in the
joint distribution of the random sample. We write this as

L(θ) = L(θ;x1, . . . , xn) =

n∏
i=1

f(xi; θ). (2.1)

This is called the likelihood function of the random sample. A measure of
the center of L(θ) seems to be an appropriate estimate of θ. We often use the
value of θ at which L(θ) is maximized. If this value is unique, then it is called

the maximum likelihood estimator (mle), denoted as θ̂:

θ̂ = ArgmaxL(θ). (2.2)

We often work with the log of the likelihood in practice, which is the function
l(θ) = log(L(θ)). The logarithm is a strictly increasing function, so its maximum
is obtained exactly when the maximum of L(θ) is obtained. In most models,

the pdf and pmf are differentiable functions of θ, in which cases θ̂ solves the
equation:

∂θl(θ) = 0 (2.3)

This is equivalent to saying θ̂ maximizes l(θ). If θ is a vector of parameters, this
results in a system of equations to be solved simultaneously. These equations
are called the estimating equations, (EE).
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2.1.2 Histogram estimates of pmfs and pdfs

Let X1, . . . , Xn be a random sample on a random variable X with cdf F (x). A
histogram of the sample is an estimate of the pmf or pdf depending on whether
X is discrete of continuous. We make no assumptions on the form of the dis-
tribution of X. In particular, we don’t assume the parametric form of the
distribution, hence the histogram is often called the nonparametric estima-
tor.

The distribution of X is discrete

Assume X is a discrete r.v. with pmf p(x). Consider a sample X1, . . . , Xn.
Suppose X ∈ D = {a1, . . . , an}, then intuitively the estimate of p(aj) is the
relative frequency of aj . More formally, for j = 1, . . . ,m we define the statistic

Ij(Xi) =

{
1 Xi = aj

0 Xi 6= aj
(2.4)

Then the estimate of p(aj) is the average

p̂(aj) =
1

n

n∑
i=1

Ij(Xi) (2.5)

The estimators {p̂(a1), . . . , p̂(am)} constitute the nonparametric estimate of the
pmf p(x). We note that Ij(Xi) has a Bernoulli distribution with probability
p(aj), and so

E[p̂(aj)] =
1

n

n∑
i=1

E[Ij(Xi)] =
1

n

n∑
i=1

p(aj) = p(aj), (2.6)

which means p̂(aj) is an unbiased estimator of p(aj).

Now, suppose that the space of X is infinite, i.e, D = {a1, . . . , } then in
practice we select a value, say am, and make the groupings

{a1}, {a2}, . . . , {am}, ãm+1 = {am+1, . . . } (2.7)

Let p̂(ãm+1) be the proportion of the sample items that are greater than or
equal to am+1. Then the estimates {p̂(a1), . . . p̂(am+1)} form our estimate of
p(x). To merge groups, the rule of thumb is to select m so that the frequency
of the category am exceeds twice the combined frequencies of the categories
am+1, am+2, . . .

A histogram is a barplot pf p̂(aj) versus aj . When aj contains no ordinal
information (e.g. hair colors, etc) then such histograms consist of nonabutting
bars and are called bar charts. When the space D is ordinal, then the histograms
is an abutting bar chart plotted in the natural order of the aj ’s.
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The distribution of X is continuous

Assume X is a continuous r.v. with pdf f(x). Consider a sample X1, . . . , Xn.
We first sketch an estimate for this pdf at a specified value of x. For a given
h > 0, we consider the interval (x−h, x+h). By MVT, we have for ξ, |x− ξ| < h:

P (|X − x| < h) =

ˆ x+h

x−h
f(t) dt ≈ 2hf(x). (2.8)

The LHS is the porprotion of the sample items that fall in the interval (x −
h, x+ h). This suggests the use of the estimate of f(x) at a given x:

f̂(x) =
#{|Xi − x| < h}

2hn
. (2.9)

More formally, the indicator statistic is, for i = 1, . . . , n

Ii(x) =

{
1 x− h < Xi < x+ h

− else
, (2.10)

from which we obtain the nonparametric estimator of f(x):

f̂(x) =
1

2hn

n∑
i=1

Ii(x). (2.11)

Since the sample items are iid:

E[f̂(x)] =
1

2hn
nf(ξ)2h = f(ξ)→ f(x) as h→ 0. (2.12)

Therefore f̂(x) is approximately (as opposed to exact in the discrete case) an
unbiased estimator of f(x). Ii is called the rectangular kernel with band-
width 2h.

Provided realized values x1, . . . , xn of the random sample of X with pdf
f(x), there are many ways to obtained a histogram estimate of f(x). First,
select an integer m, an h > 0, and a value a < min(xi), so that the m intervals
cover the range of the sample. These intervals form our classes. Let Aj =

(a+ (2j − 3)h, a+ (2j − 1)h] for j = 1, . . . ,m. Let f̂h(x) denote our histogram
estimate. For a − h < x ≤ (2m − 1)h, x is in one and only one Aj . Then for
x ∈ Aj , we define

f̂h(x) =
#{xi ∈ Aj}

2hn
≥ 0. (2.13)
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We see that
ˆ ∞
∞

f̂h(x) dx =

ˆ a+(2m−1)h

a−h
f̂h(x) dx

=

m∑
j=1

ˆ
Aj

#{xi ∈ Aj}
2hn

dx

=
1

2hn

m∑
j=1

#{xi ∈ Aj}[h(2j − 1− 2j + 3)]

=
2h

2hn
n

= 1. (2.14)

So f̂h(x) satisfies the properties of a pdf.

2.2 Confidence Intervals

Definition: Let X1, . . . , Xn be a sample on a r.v. X which has the pdf
f(x; θ), θ ∈ Ω. Let 0 < α < 1 be specified. Let L = L(X1, . . . , Xn) and
U = U(X1, . . . , Xn) be two statistics. We say that the interval (L,U) is a
(1− α)100% confidence interval for θ if

1− α ≡ Pθ[θ ∈ (L,U)]. (2.15)

That is, the probability that the interval includes θ is 1−α, which is called the
confidence coefficient or the confidence level of the interval.

Under normality, the confidence interval for µ is given by(
x̄− tα/2,n−1s/

√
n, x̄+ tα/2,n−1s/

√
n
)

(2.16)

where tα/2,n−1 is the upper α/2 critical points of a t-distribution with n− 1 df.
This CI is referred to as the (1 − α)100% t-interval for µ. s is referred to as
the standard error of X̄.
The Central Limit Theorem: Let X1, . . . , Xn denote the observations of
a random sample from a distribution that has mean µ and finite variance σ2.
Then the distribution function of the r.v. Wn = (X̄ − µ)/(σ/

√
n) converges to

Φ, the distribution function of the N (0, 1) distribution, as n to∞.

When the sample is large, the CI for µ can be given by(
x̄− zα/2s/

√
n, z̄ + zα/as/

√
n
)

(2.17)

In general, for the same α, the t-CI is larger (and hence more conservative) than
the z-CI. When σ is known, we replace s by σ.
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The larger sample CI for p is given by(
p̂− zα/2

√
p̂(1− p̂)/n, p̂+ zα/2

√
p̂(1− p̂)/n

)
(2.18)

where
√
p̂(1− p̂)/n is called the standard error of p̂.

2.2.1 CI for difference in means

By independence of samples,

Var(∆̂) =
σ2

1

n1
+
σ2

2

n2
(2.19)

where ∆̂ = X̄ − Ȳ . We can readily show that ∆̂ is an unbiased estimator of
∆ = µ1 − µ2. Let the sample variances

S2
j =

1

nj − 1

nj∑
i=1

(Xi − X̄)2 (2.20)

be given. Then th random variable follows the N (0, 1):

Z =
∆̂−∆√
S2

1

n1
+

S2
2

n2

∼ N (0, 1) (2.21)

The approximate (1− α)100% CI for ∆ = µ1 − µ2 is then given by(x̄− ȳ)− zα/2

√
S2

1

n1
+
S2

2

n2
, (x̄− ȳ) + zα/2

√
S2

1

n1
+
S2

2

n2

 (2.22)

This is a large sample (1− α)100% CI for µ1 − µ2.

Now, suppose X ∼ N (µ1, σ
2) and Y ∼ N (µ2, σ

2) (i.e. X and Y are normally
distributed with the same variance) are independent. We want to show ∆ ∼ t-
distribution. We know that X̄ ∼ N (µ1, σ

2/n1) and Ȳ ∼ N (µ2, σ
2/n2), so it is

true that

(X̄ − Ȳ )− (µ1 − µ2)

σ
√

1/n1 + 1/n2

∼ N (0, 1). (2.23)

This quantity will later be the numerator of our T -statistic. Now, let

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
(2.24)
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then S2
p , the pooled estimator of σ2, is also an unbiased estimator of σ2.

Because (ni − 1)S2
i /σ

2 ∼ χ2(n − 1), we have that (n − 2)S2
p/σ

2 ∼ χ2(n − 2).
And so

T =

(X̄−Ȳ )−(µ1−µ2)

σ
√

1/n1+1/n2√
(n− 2)S2

p/(n− 2)σ2
=

(X̄ − Ȳ )− (µ1 − µ2)

Sp
√

1/n1 + 1/n− 2
∼ tn−2 (2.25)

From here, it is easy to work out the (1− α)100% CI for µ1 − µ2:

(
(x̄− ȳ)− tα/2,n−2sp

√
1

n1
+

1

n2
, (x̄− ȳ) + tα/2,n−2sp

√
1

n1
+

1

n2

)
(2.26)

There is some difficulty when the unknown variances σ in the distributions
of X and Y are not equal.

2.2.2 CI for difference in proportions

Our estimator of the difference in proportions p1− p2 is X̄ − Ȳ ≡ p̂1− p̂2 where
X ∼ b(1, p1) and Y ∼ b(1, p2). Of course, we know that σ2

1 = p1(1 − p1) and
σ2

2 = p2(1 − p2). From here, the approximate (1 − α)100% confidence interval
for p1 − p2 is

(p̂1 − p̂2)± zα/2

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
(2.27)

2.3 Order Statistics

Let X1, X2, . . . , Xn denote a random sample from a distribution of the continu-
ous type having a pdf f(x) that has support S = (a, b), where ∞ ≤ a < b ≤ ∞.
Let Y1 < Y2 < · · · < Yn represent X1, X2, . . . , Xn when the latter are arranged
in ascending order of magnitude. We call Yi, i = 1, 2, ..., n, the ith order statistic
of the random sample X1, X2, . . . , Xn. We have a theorem which gives the joint
pdf of Y1, Y2, . . . , Yn.

Theorem 2.3.1. The joint pdf of Y1, Y2, . . . , Yn is given by

g(y1, y2, . . . , yn) =

{
n!f(y1) . . . f(yn) a < y1 < · · · < yn < b

0 else
. (2.28)

Proof: The support of X1, . . . , Xn can be partitioned into n! mutually dis-
joint sets that map onto the support of the Yi’s. Obviously the Jacobian for
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each transformation is either 1 or −1.

g(y1, y2, . . . , yn) =

n!∑
i=1

|Ji|f(y1) . . . f(yn)

=

{
n!f(y1) . . . f(yn) a < y1 · · · < yn < b

0 else
(2.29)

2.3.1 Quantiles

Let X be a random variable with a continuous cdf F (x). For 0 < p < 1,
define the pth quantile of X to be ξp = F−1(p). Let X1, X2, . . . , Xn be a
random sample from the distribution of X and let Y1 < Y2 < · · · < Yn be
the corresponding order statistics. Let k be the greatest integer less than or
equal to p(n+ 1). We next define an estimator ofξp after making the following
observation. The area under the pdf f(x) to the left of Yk is F (Yk). The
expected value of this area is

E[F (Yk)] =

ˆ b

a

F (yk)gk(yk) dyk (2.30)

where gk(yk) is the pdf of Yk. Consider the transformation z = F (yk), then the
integral becomes

E[F (Yk)] =

ˆ 1

0

n!

(k − 1)!(n− k)!
zk(1− z)n−k dz = · · · = k

n+ 1
(2.31)

where we recognize the similarity between the integral and the integral of a beta
pdf. So, on the average, there is k/(n + 1) of the total area to the left of Yk.
Because p = k/(n + 1), it seems reasonable to take Yk as an estimator of the
quantile ξp. Hence, we call Yk the pth sample quantile. It is also called the
100pth percentile of the sample.

A five-number summary of the data consists of the following five sample
quantiles: the minimum (Y1), the first quartile (Y.25(n+1)), the median, the third
quartile (Y.75(n+1)), and the maximum (Yn). For this section, we use the no-
tation Q1, Q2, and Q3 to denote, respectively, the first quartile, median, and
third quartile of the sample.

The five-number summary is the basis for a useful and quick plot of the data.
This is called a boxplot of the data. In the box and whisker plots, we also
define a potential outlier. Let h = 1.5(Q3 − Q1). The lower/upper fence is
defined by L/UF = Q1/3 ∓ h. Points lying outside the (LF,UF ) interval are
called potential outliers.

2.3.2 CI for quantiles

Let X be a continuous random variable with cdf F (x). For 0 < p < 1, define
the 100pth distribution percentile to be ξp, where F (ξp) = p. For a sample of
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size n on X, let Y1 < Y2 < · · · < Yn be the order statistics. Let k = [(n+ 1)p].
Then the 100pth sample percentile Yk is a point estimate of ξp.

Let i < [(n + 1)p] < j, and consider the order statistics Yi < Yj and the
event Yi < ξp < Yj . The event Yi < ξp < Yj is equivalent to obtaining between
i (inclusive) and j (exclusive) successes in n independent trials. So,

P (Yi < ξp < Yj) =

j−1∑
w=i

(
n

w

)
pw(1− p)n−w. (2.32)

For the median, we denote ξ1/2 the median of F (x), i.e. ξ1/2 solves F (x) =
1/2. Let Q2 denote the sample median, which is a point estimator of ξ1/2. Take
cα/2 such that P [S ≤ cα/2] = α/2 where S ∼ b(n, 1/2). Then note also that
P [S ≤ cα/2] = α/2. From here we have

P [Ycα/2 < ξ1/2 < Yn−cα/2
] = 1− α. (2.33)

So, if yα/2+1 and yn−α/2 are the realized values of the order statistics Ycα/2+1

and Yn−cα/2 then the interval (
ycα/2

, yn−cα/2

)
(2.34)

is a (1− α)100% confidence interval for ξ1/2.

2.4 Introduction to Hypothesis Testing

Suppose a r.v. X ∼ f(x; θ), where θ ∈ Ω. Suppose that θ ∈ ω0 or θ ∈ ω1 where
ω0 and ω1 are disjoint subsets of Ω and ω0 ∪ω1 = Ω. We label these hypotheses
as

H0 : θ ∈ ω0

H1 : θ ∈ ω1. (2.35)

H0 is called the null hypothesis. H1 is called the alternative hypothesis.
Type I error occurs when we decide that θ ∈ ω1 when in fact θ ∈ ω0. Type II
error occurs when we decide the opposite.

We require the critical region, C, to complete the testing structure for the
general problem. Consider the r.v. X and the hypotheses given above. C is
such that

Reject H0 if (X1, . . . , Xn) ∈ C
Reject H1 if (X1, . . . , Xn) ∈ Cc. (2.36)

Type I error occurs if H0 is rejected when it is true. Type II error occurs if
H0 is retained when H1 is true.
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Definition: We say a critical region C is of size α if

α = max
θ∈ω0

Pθ[(X1, . . . , Xn)] ∈ C (2.37)

Over all critical regions of size α, we want to consider critical regions that have
lower probabilities of Type II error, i.e., for θ ∈ ω1, we want to maximize

1− Pθ[Type II Error] = Pθ[(X1, . . . , Xn) ∈ C] (2.38)

The probability on the right side of the equation above is called the power of
the test at θ. It is the probability that the test detects the alternative when
θ ∈ ω1 is the true parameter. Minimizing Type II error requires maximizing the
test power. The power function of C is

γC(θ) = Pθ[(X1, . . . , Xn) ∈ C]; θ ∈ ω1. (2.39)

Given two critical regions C1, C2 both of size α. C1 is better than C2 if
γC1

(θ) ≥ γC2
(θ) for all θ ∈ ω1.

A simple hypothesis completely specifies the underlying distribution. A
composite hypothesis can be composed of many simple hypotheses and hence
do not completely specify the distribution. α is often referred to as the signif-
icance level of the test associated with that critical region.

2.5 Additional comments about statistical test

2.5.1 Observed Significance Level, p-value

Suppose H0 : µ = µ0 and H1 : µ > µ0, where µ0 is maximized. Then we reject
H0 in favor H1 if X̄ ≥ k where X̄ is the sample mean. The p-value is the
probability that under H0, X̄ ≥ x̄:

p− value = PH0
(X̄ ≥ x̄) (2.40)

If α > p then we reject H0 in favor of H1. Else, we fail to reject H1.

2.6 Chi-Square Tests

Let r.v. Xi ∼ N (µi, σ
2
i ) for i = 1, . . . , n. Let X1, . . . , Xn be mutually indepen-

dent. The joint pdf is then

1

σ1 . . . σn(
√

2π)n
exp

[
−1

2

n∑
i=1

(
xi − µi
σi

)2
]

(2.41)
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The r.v.

n∑
i=1

(
xi − µi
σi

)2

(2.42)

has a χ2(n) distribution.

We will now consider some r.v.s that have approximate χ2 distribution.
Suppose X1 ∼ b(n, p1). Consider the r.v. defined by

Y =
X1 − p1√
np1(1− p1)

(2.43)

which has, as n→∞, an approximateN (0, 1). We know from earlier discussions
that Y 2 ∼ N (0, 1). Now, let X2 = n−X1 and p2 = 1− p1. Let Q1 = Y 2. Then
we have

Q1 =
(X1 − np1)2

np1(1− p1)
=

(X1 − np1)2

np1
+

(X1 − np1)2

n(1− p1)
=

(X1 − np1)2

np1
+

(X2 − np2)2

np2
.

(2.44)

In general, let X1, . . . , Xk−1 have a multinomial distribution with the param-
eters n and p1, . . . , pk−1. Let Xk = n − (X1 + · · · + Xk−1) and let pk =
1− (p1 + · · ·+ pk−1). Define Qk−1 by

Qk−1 =

k∑
i=1

(Xi − npi)2

npi
(2.45)

As n → ∞, Qk−1 ∼ χ2(k − 1). This makes the r.v. Qk−1 a basis of the
tests of certain statistical hypotheses. For instance, when the joint pdf of
X1, X2, . . . , Xk−1 (and Xk = n −X1 − · · · −Xk−1) is a multinomial pmf with
parameters n and p1, . . . , pk−1 (and pk = 1−p1−· · ·−pk−1), we can consider the
simple null hypothesis H0 : p1 = p10, . . . , pk−1 = p(k−1)0 where p10, . . . , p(k−1)0

are specified numbers. Under this null, the r.v.

Qk−1 =

k∑
1

(Xi − npi0)2

npi0
(2.46)

has an approximate χ2(k − 1). Intuitively, when H0 is true, npi0 must be the
expected value of Xi, which means Qk−1 is not too large. Thus, we reject H0

if Qk−1 ≥ c. The critical value c is specified by the significance level α, c =
qchisq(1-α,k-1). This is frequently called the goodness-of-fit test.

We can have a chi-square test for homogeneity. Consider two multinomial
distributions with parameters nj , p1j , . . . , pkj and j = 1, 2. Let Xij where i =
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1, . . . , k and j = 1, 2 be frequencies. Suppose n1, n2 large and the observations
are independent, then the r.v.

2∑
j=1

n∑
i=1

(Xij − njpij)2

njpij
∼ χ2(2k − 2) (2.47)

because it is the sum of two independent r.v.’s each of which ∼ χ2(k − 1). The
null hypothesis we consider is

H0 : p11 = p12; . . . ; pk1 = pk2, (2.48)

where each pi1 = pi2 where i = 1, . . . , k is unspecified. It turns out that the mle
of pi1 = pi2 is given by

θ =
Xi1 +Xi2

n1 + n2
(2.49)

which makes intuitive sense. Note that we need only k−1 points estimates, and
so the r.v.

Qk−1 =

2∑
j=1

k∑
i=1

{Xij − nj [(Xi1 +Xi2)/(n1 + n2)]}2

nj [(Xi1 +Xi2)/(n1 + n2)]
∼ χ2(2k − 2− (k − 1) = k − 1).

(2.50)

With this, we can test if two multinomial distributions are the same.

We can also test for independence. Suppose the result of an experiment is
classified by only two attributes A (of a possible outcomes) and B (of b possible
outcomes). These events are A1, . . . , Aa for attribute A and B1, . . . , Bb for
attribute B. Then consider pij = P (Ai ∩Aj). Say the experiment is repeated n
independent times and Xij denotes the frequency of the event Ai ∩ Bj . There
are k = ab such events, so the r.v.

Qab−1 =

b∑
j=1

a∑
i=1

(Xij − npij)2

npij
∼ χ2(ab− 1), (2.51)

provided n is large. To test for independence, H0 : P (Ai ∩ Bj) = P (Ai)P (Bj)
for all i, j. To test H0, we cannot compute Qab−1, but instead compute

b∑
j=1

a∑
i=1

[Xij − n(Xi./n)(X.j/n)]2

n(Xi./n)(X.j/n)
∼ χ2(ab− 1− (a+ b− 2) = (a− 1)(b− 1))

(2.52)

where

p̂i. =
Xi.

n
, Xi. =

b∑
j=1

Xij , i = 1, . . . , a (2.53)

p̂.j =
X.j

n
, X.j =

a∑
i=1

Xij , j = 1, . . . , b (2.54)
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Just a sanity check, the chi-square statistic always has the form of
∑

Expected - Observed2/Expected.
All tests’ statistics have this form. The differences are subtle and are context-
based.

2.7 The Method of Monte Carlo

The idea of Monte Carlo methods is to use random numbers to simulate random
phenomena and to make numerical approximations. In general, we use Monte
Carlo methods for

• Inverse transform sampling: take a random uniform (0, 1) and transform
it into a different distribution.

• Accept-Reject Algorithm, which is a method that uses a random uniform
generator to produce a set of random numbers that follows some other
distribution.

• To approximate the value of definite integrals.

2.7.1 Inverse Transform

For example, we want to simulate coin flips of a coin that is biased and comes
up heads with probability p. Here’s the algorithm:

• Generate a random uniform (0, 1)→ u1

• If u1 < p =⇒ heads, else tails.

• Repeat

For any multinomial distribution with probabilities p1, . . . , pk we can follow
this process:

• Generate a random uniform u− 1 ∼ (0, 1).

• If u1 ≤ p1 =⇒ assign outcome 1.

• Elif u1 ≤ p1 + p2 =⇒ assign outcome 2.

• . . .

• Elif u1 ≤ p1 + · · ·+ pk−1 =⇒ assign outcome k − 1.

• Else, assign outcome k.

Basically, what we’re doing here is using the CDF to check against u.
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In the continuous case, we generate u ∼ (0, 1) but we want a random variable
with some other density X ∼ fX(x). Assuming that X = T (U), starting with
the CDF of X:

F (x) = P (X ≤ x)

= P (T (u) ≤ x)

= P (u ≤ T−1(x))

= Fu(T−1(x))

= T−1(x) (2.55)

where the last equality follows from the fact that Fu(u) is just the identity
function. So we have

F (x) = T−1(x) (2.56)

which means F and T are inverses of each other.

For example, we can use the inverse transform to generate random Exp(β):

fX(x) =
1

β
e−x/β , x ∈ R+ (2.57)

We want to find FX(x) first:

FX(x) =

ˆ x

0

1

β
e−x

′/β dx′ = 1− e−x/β . (2.58)

And so it is easy to see that

T−1(x) = 1− e−x/β =⇒ u = 1− e−x/β =⇒ x = β log(1− u). (2.59)

From here, we can generate a sample of uniform u’s to get X ∼ Exp(β).

Note that a disadvantage to this method is the fact that for this to work we
must be able to write down the inverse CDF in some closed form. The advantage,
though, is that this method is very efficient if it works. This is because for each
u we generate we get an x. This is not the case for the methods we will discuss
next.

2.7.2 Accept-Reject Generation Algorithm

2.7.3 Evaluating definite integrals

This is based on the idea that

E[g(x)] =

ˆ ∞
−∞

g(x)f(x) dx. (2.60)
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For example,

ˆ 1

0

e−x
2/2 dx = E[e−x

2/2] (2.61)

where x ∼ U(0, 1).

We could estimate g(.) by

ḡ =
1

J

J∑
i=1

[g(x(j))] (2.62)

where x(j) ∼ f(x). If we take enough random variables, ḡ → E[g]. We could
also use the CLT to calculate error bounds:

ḡ ± zα/2SE(ḡ), (2.63)

where

SE(ḡ) =
1

J2

J∑
i=1

(
g(x(j))− ḡ

)2

. (2.64)

For example, we can try to evaluate

ˆ ∞
0

x4e−x
2/2 dx. (2.65)

We identify g(x) = x4, and e−x as the density for Exp(1). What we can do is
generate a sample of random Exp(1), lu into x4 then take the average value of
x4.
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2.8 Bootstrapping

The basic idea of bootstrapping is this: We have a sample of data x1, . . . , xn =
~X. We will replicate sample infinitely many times. This will be a model for the
population.

Note that this process doesn’t work well in the case that our sample is poorly
representative. In practice, we obtain many bootstrap samples X∗’s where each
X∗ is a resample from our original sample where we randomly select X∗i from
~X with replacement.

The bootstrap sample is the same size as the original sample.

If we’re interested in estimating a parameter using an estimator θ̂ = f( ~X),

then we can calculate an estimate θ̂∗ = f( ~X∗) from each bootstrap sample. The

bootstrap distribution of θ̂∗ models the sampling distribution of θ̂.

For example, let x1, . . . , xn be a random sample from some population with
an unknown mean µ. We can think about taking a simple bootstrap sample,
X∗i , then calculate its mean. Of course, this is an unbiased estimator for µ.

If we take many bootstrap samples X∗i and calculate the mean of each, we
could generate a bootstrap for X̄∗. In an estimation setting, the most common
use of bootstrap distribution is to estimate the SE of θ̂.

We can also find CI using percentiles/normal approximation this way.

2.8.1 Bootstrapping for Hypothesis Testing

Say we have H0 : µ = µ0 and Ha : µ > µ0. To test these hypotheses with
bootstrapping, we shift the original data such that the shifted mean is µ0, i.e.
we do Xi − X̄ + µ0 to all observations.

From here, we bootstrap and generate a sampling distribution for the mean
of the bootstrap samples. Then, we look and count how many bootstraps means
are greater than the observed means and find the associated p-value.

We note that the advantage of doing this is we don’t make any distributional
assumptions. The disadvantage (kind of) is that this process can be a little too
computationally expensive. However, with modern computers, this is no longer
a major problem.

For example, say we want to compare two means. H0 : ∆ = 0, Ha : ∆ 6= 0.
Say we have two samples (of different sample sizes) from cdfs F (x) and F (x−∆),
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respectively. Under the null, these samples come from the same distribution.
So, we can follow these steps:

• Combine the samples into a single sample.

• Take one bootstrap of size n1 and one of size n2.

• Calculate the difference in means.

• Repeat many times

• Count how many bootstrap differences are further from 0 than he original
observed difference in means.

• Extract the p-value (either by percentile or by SE).
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Part 3

Consistency and Limiting
Distributions

3.1 Convergence in Probability

Definition: Let {Xn} be a sequence of r.v. and let X be a r.v. defined on a
sample pace. Xn converges in probability to X if, for all ε < 0,

lim
n→∞

P [|Xn −X| ≥ ε] = 0, (3.1)

i.e.,

lim
n→∞

P [|Xn − x| < ε] = 1. (3.2)

If so, we write

Xn
P−→ X. (3.3)

Theorem 3.1.1. (handy theorem) If θ̂n is an unbiased estimator of θ, then

θ̂n
P−→ θ̂ if limn→∞Var(θ̂n) = 0. In which case, we call θ̂ a consistent estimator

of θ.

Theorem 3.1.2. (Weak Law of Large Numbers). Let {Xn} be a sequence of
iid r.v. having common mean µ and variance σ2, then

X̄ ≡ 1

n

n∑
i=1

Xi
P−→ µ. (3.4)

Proof: The proof uses Chebychev’s inequality. Let ε > 0 be given, then

P [|Xn −X| ≥ ε] = P [
∣∣X̄ − µ∣∣ ≥ (ε

√
n/σ)(σ/

√
n)] ≤ σ2

nε2
→ 0, n→∞ (3.5)

37
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Theorem 3.1.3. If Xn
P−→ X and Yn

P−→ Y , then

Xn + Yn
P−→ X + Y. (3.6)

Proof: The proof is quite easy. It uses the fact that P is monotone relative to
set containment and the triangle inequality.

Theorem 3.1.4. If Xn
P−→ X then aXn

a−→ aX.

Proof: The proof is also very easy, so I won’t show it here.

Theorem 3.1.5. If Xn
P−→ a and the real function g is continuous at a then

g(Xn)
P−→ g(a). (3.7)

Proof: The proof is analysis-like. It’s not so hard so I (again) won’t show it here.

Theorem 3.1.6. If Xn
P−→ X and Yn

P−→ Y , then

XnYn
P−→ XY. (3.8)

Proof: This proof uses the result from the previous theorem. The key is to write
XnYn as a combination of X2

n, Y
2
n , and (Xn − Yn)2. Applying the previous to

obtain the desired conclusion.

3.1.1 Sampling and Statistic

Definition: (Consistency) Let X be a r.v. with cdf F (x, θ) with θ ∈ Ω. Let
X1, . . . , Xn be a sample from the distribution of X and let Tn denote a statistic.
Tn is a consistent estimator of θ iff

Tn
P−→ θ. (3.9)

3.2 Convergence in Distribution

Definition: (Convergence in Distribution) Let {Xn} be a sequence ra r.v. and
let X be a r.v.. Let FXn and FX be, respectively, the cdfs of Xn and X. Let
C(FX) denote the set of all points where FX is continuous. We say that Xn

converges in distribution to X if

lim
n→∞

FXn(x) = FX(x), ∀x ∈ C(FX). (3.10)

We denote this convergence by Xn
D−→ X.

Stirling’s Formula:

Γ(k + 1) ≈
√

2πkk+1/2e−k (3.11)

when k is large .
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Theorem 3.2.1. If Xn converges to X in probability, then Xn converges to X
in distribution.

Theorem 3.2.2. If Xn converges to the constant b in distribution, then Xn

converges to b in probability.

Theorem 3.2.3. Suppose Xn converges to X in distribution and Yn converges
in probability to 0, then Xn + Yn converges to X in distribution.

Theorem 3.2.4. Suppose Xn converges to X in distribution and g is a continu-
ous function on the support of X. Then g(Xn) converges to g(X) in distribution.

Theorem 3.2.5. (Slutsky’s Theorem) Let Xn, X,An, and Bn be random vari-

ables and let a and b be constants. If Xn
D−→ X, An

P−→ a, and Bn
P−→ b

then

An +BnXn
D−→ a+ bX. (3.12)

3.2.1 Bounded in Probability

Definition: We say that the sequence of random variables {Xn} is bounded in
probability if, for all ε > 0, there exists a constant Bε > 0 and an integer Nε
such that

n ≥ Nε =⇒ P [|Xn| ≤ Bε] ≥ 1− ε. (3.13)

Theorem 3.2.6. Let {Xn} be a sequence of r.v. and let X be a r.v.. If Xn → X
in distribution, then {Xn} is bounded in probability.

Theorem 3.2.7. Let {Xn} be a sequence of r.v. bounded in probability and
let {Yn} be a sequence of r.v. that converges to 0 in probability. Then

XnYn
P−→ 0. (3.14)

3.2.2 ∆-method

Little o notation: a = o(b) if and only if a/b→ 0 as b→ 0.

Theorem 3.2.8. Suppose {Yn} is a sequence of r.v. that is bounded in prob-

ability. Suppose Xn = oP (Yn), then Xn
P−→ 0, as n→∞.

Theorem 3.2.9. Let {Xn} be a sequence of r.v. such that

√
n(Xn − θ)

D−→ N (0, σ2). (3.15)

Suppose g(x) is differentiable at θ and g′(θ) 6= 0, then

√
n(g(Xn)− g(θ))

D−→ N (0, σ2(g′(θ))2) (3.16)
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3.2.3 Moment Generating Function Technique

Theorem 3.2.10. Let {Xn} be a sequence of r.v. with mgf MXn(t) that exists
for −h < t < h for all n. Let X be a r.v. with mdf M(t), which exists for

|t| ≤ h1 ≤ h. If limn→∞MXn(t) = M(t) for |t| ≤ h1, then Xn
D−→ X.

3.3 Central Limit Theorem

Theorem 3.3.1. (CLT) Let X1, . . . , Xn denote the observations of a r.v. from
a distribution that has mean µ and positive variance σ2. Then the r.v.

Yn =

∑n
i=1Xi − nµ
σ
√
n

=

√
n(X̄n − µ)

σ

D−→ Z ∼ N (0, 1). (3.17)

Proof: Assume that the mgf M(t) = E(etX) exists for −h < t < h, then the
function

m(t) = E[et(X−µ)] = e−µtM(t) (3.18)

also exists for −h < t < h. m(t) is the mgf for X − µ, so m(0) = 1,m′(0) =
E[X − µ] = 0, and m′′(0) = E[(X − µ)2] = σ2. By Taylor theorem, there exists
a number ξ ∈ [0, t] such that

m(t) = m(0) +m′(0)t+
m′′(ξ)t2

2

= 1 +
m′′(ξ)t2

2

= 1 +
σ2t2

2
+

[m′′(ξ)− σ2]t2

2
. (3.19)

Now consider M(t;n):

M(t;n) = E

[
exp

(
t

∑
Xi − nµ
σ
√
n

)]
= . . .

=

{
E

[
exp

(
t
X − µ
σ
√
n

)]}n
=

[
m

(
t

σ
√
n

)]n
, −h < t

σ
√
n
< h

=

{
1 +

t2

2n
+

[m′′(ξ)− σ2]t2

2

}n
. (3.20)

Taking n→∞:

lim
n→∞

[m′′(ξ)− σ2] = 0, (3.21)
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and so

lim
n→∞

M(t;n) = et
2/2, t ∈ R. (3.22)

So Yn ∼ N (0, 1).
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Part 4

Maximum Likelihood
Methods

43
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4.1 Maximum Likelihood Estimation

Recall the likelihood function:

L(θ; x) =

n∏
i=1

f(xi; θ), θ ∈ Ω (4.1)

where f(xi; θ) is the pdf which the variables Xi follow that depends on the
parameter θ and x = (x1, x2, . . . , xn)> is the sample. It’s often more convenient
to use the log likelihood:

l(θ) = lnL(θ) =

n∑
i=1

log f(xi; θ). (4.2)

θ̂ is the mle of θ if θ̂ maximizes l(θ). Let θ0 denote the true value of θ. We
will look at theorem which shows that the maximum of L(θ) asymptotically
separates the true model at θ0 from models at θ 6= θ0. To prove this theorem,
we look at regularity conditions:

Regularity Conditions. Regular conditions are

• The cdfs are distinct, i.e., θ 6= θ′ =⇒ F (xi; θ) 6= F (xi; θ
′).

• The pdfs have common support for all θ.

• The point θ0 is an interior point in Ω.

Theorem 4.1.1. Assume that θ0 is the true parameter and that

Eθ0 [f(Xi, θ)/f(Xi; θ0)] (4.3)

exists. Under the first two regularity conditions

lim
n→∞

Pθ0 [L(θ0,X) > L(θ; X)] = 1, ∀θ 6= θ0. (4.4)

Definition 4.1.1. (Maximum Likelihood Estimator). We say that θ̂ = θ̂(X) is
a maximum likelihood estimator (mle) of θ if

θ̂ = ArgmaxL(θ,X) (4.5)

where the notation means L(θ,X) attains maximum at θ̂.

Theorem 4.1.2. (Invariance Property) LetX1, . . . , Xn be iid with pdf f(x; θ), θ ∈
Ω. For a specified function g, let η = g(θ) be a parameter of interested. Suppose

θ̂ is the mle of θ. Then g(θ̂) is the mle of η = g(θ).

Theorem 4.1.3. Assume that X1, . . . , Xn satisfy the regularity conditions,
where θ0 is the true parameter, and further that f(x; θ) is differentiable w.r.t.
θ ∈ Ω. Then the likelihood equation,

∂θL(θ) = 0 ⇐⇒ ∂θl(θ) = 0 (4.6)

has a solution θ̂n such that θ̂n
P−→ θ0.
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Theorem 4.1.4. Assume that X1, . . . , Xn satisfy the regularity conditions,
where θ0 is the true parameter, and that f(x; θ) is differentiable w.r.t. θ ∈ Ω.

Suppose the likelihood equation has the unique solution θ̂n. Then θ̂n is a
consistent estimator of θ0.

So far, we know that two things that make mle good:

• Invariance property

• Consistency of MLEs.

Example 4.1.1. Let X1, . . . , Xn be iid Exp(θ) r.v.’s. We want to find θ̂MLE.
We know that

f(xi; θ) =
1

θ
e−xi/θ; xi > θ, θ > 0. (4.7)

The likelihood function is

L(θ) =
1

θn
e−

∑n
i=1 xi/θ. (4.8)

The log likelihood is

l(θ) = −n ln θ − 1

θ

∑
xi

. (4.9)

from which we can easily solve the mle

θ̂ =
1

n

∑
i

xi = x̄. (4.10)

Since all regular conditions are satisfied, this is a good mle.

Example 4.1.2. Let X1, . . . , Xn be iid U(0, θ) r.v.. We want to find the θ̂ML.
Now,

f(xi; θ) =
1

θ
; 0 ≤ xi ≤ θ; θ > 0. (4.11)

We note that the second and third regularity conditions do not hold. Next,

L(θ) =
1

θn
=⇒ l(θ) = −n ln θ. (4.12)

We want θ̂ to be as small as possible to maximize L(θ), but it also has to be

bigger than all of the observations. Thus, θ̂ML = maxi(Xi).

Example 4.1.3. Let Xi ∼ N (µ, σ2) r.v.. We want to find µ̂ and σ̂2. We know
that

f(xi;µ, σ
2) =

1√
2πσ2

e−(xi−µ)2/2σ2

;xi, µ ∈ R, σ2 > 0. (4.13)
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The log likelihood is easy:

l(µ, σ2) = −n
2

ln(2π)− n

2
ln
(
σ2
)
− 1

2σ2

∑
(xi − µ)2. (4.14)

Then

∂µl(µ, σ
2) = − 1

σ2

∑
(xi − µ) = 0 =⇒ µ̂ = x̄. (4.15)

Also,

∂σ2 = −n
2

1

σ2
+

1

2σ4

∑
(xi − x̄)2 = 0 =⇒ σ̂2 =

1

n

∑
(xi − x̄)2. (4.16)

Because the regularity conditions are satisfied, these are consistent estimators.

Example 4.1.4. Let Xi ∼ Bernoulli with parameter p, i.e., P (xi = 1) = p and
P (xi = 0) = 1− p. Then

P (x1, . . . , xn) = p
∑
xi(1− p)n−

∑
xi . (4.17)

Then the log likelihood function is just

l(p) =
∑

xi ln p+
(
n−

∑
xi

)
ln(1− p). (4.18)

It follows that

∂pl(p) =

∑
xi
p
− n−

∑
xi

1− p
= 0 =⇒ p̂ =

∑
xi
n

. (4.19)

This is a consistent estimator because the regularity conditions are satisfied.

Example 4.1.5. Let Xi ∼ Poi(λ). We want to find λ̂. We have

p(xi|λ) =
e−λλxi

xi!
, xi = 1, 2, . . . , λ > 0. (4.20)

The log likelihood function is

l(λ) = −ns+
∑

xi lnλ−
∑

ln(xi!). (4.21)

So,

∂λl(λ) = 0 =⇒ λ̂ = x̄. (4.22)

From WLLN, x̄→ µ, so as long as the regularity conditions are satisfied (which
they are), then we have a consistent estimator for µ.
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4.2 Rao-Cramér Lower Bound and Efficiency

Additional Regularity Conditions.

• The pdf of f(x; θ) is twice differentiable as a function of θ.

• The integral
´
f(x; θ) dx can be differentiated twice under the integral sign

as a function of θ.

All four regularity conditions we have seen so far combined means that the
parameter θ does not appear in the endpoints of the interval in which f(x; θ) >
0 and that we can interchange integration and differentiation w.r.t θ. The
derivation is below is the the continuous case, the the discrete case can be
handled in a similar manner. I’ll summarize the derivation in a few steps below:

1 =

ˆ ∞
−∞

f(x; θ) dx
∂θ−→ 0 =

ˆ ∞
−∞

∂θf(x; θ) dx. (4.23)

Next,

∂θf(x; θ) =
∂θf(x; θ)

f(x; θ)
f(x; θ) =⇒ 0 =

ˆ ∞
−∞

∂θ ln f(x; θ)f(x; θ) dx. (4.24)

And so writing this as an expection:

E [∂θ ln f(X; θ)] = 0. (4.25)

Now, if we take the second derivative of the identity integral we get

0 =

ˆ ∞
−∞

∂2
θ ln f(x; θ)f(x; θ) dx+

ˆ ∞
−∞

(∂θ ln f(x; θ))
2
f(x; θ) dx. (4.26)

The second term on the RHS can be written as an expectation, called the Fisher
information, denoted I(θ):

I(θ) = E
[
(∂θ ln f(X; θ))

2
]

= −E
[
∂2
θ ln f(X; θ)

]
(4.27)

Now, because E [∂θ ln f(x; θ)] = 0 we can see that

I(θ) = Var [∂θ ln f(X; θ)] (4.28)

The important function

∂θ ln f(x; θ) (4.29)

is called the score function. Recall that it determines the estimating equations
for the mle, i.e., the mle θ̂ solves

n∑
i=1

∂θ ln f(xi; θ) = 0. (4.30)

For an n-sample of iid r.v., the Fisher information is

I(θ) = nI(θ) = Var (∂θ lnL(θ,X)) . (4.31)
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Theorem 4.2.1. (Rao-Cramér Lower Bound.) Let X1, . . . , Xn be iid with
pdf f(x; θ), θ ∈ Ω. Assume that all four regularity conditions hold. Let Y =
u(X1, . . . , Xn) be a statistic with mean E[Y ] = k(θ). Then

Var(Y ) ≥ [k′(θ)]2

nI(θ)
(4.32)

Proof. Here’s a sketch of the proof. Define

Z =

n∑
i=1

∂θ ln f(Xi; θ). (4.33)

Then E[Z] = 0 and Var[Z] = nI(θ). Now, verify that

k′(θ) = E[Y Z] = E[Y ]E[Z] + ρσY
√
nI(θ) (4.34)

where ρ is the correlation coefficient between Y and Z. Using E[Z] = 0 and
rearrange, we get the desired result.

Theorem 4.2.2. Under the assumptions of the Rao-Cramér lower bound theo-
rem, if Y = u(X1, . . . , Xn) is an unbiased estimator of θ, so that k(θ) = θ, then
the Rao-Cramér inequality becomes

Var(Y ) ≥ 1

nI(θ)
(4.35)

Example 4.2.1. Consider a single observation from a Poisson-λ. We want to
find I(λ). Well,

P (xi;λ) =
e−λλxi

xi!
, xi ∈ N, λ > 0 ∈ Ω. (4.36)

The regularity conditions are satisfied. Now,

I(λ) = E
[
(∂λ lnP (xi, λ))

2
]
. (4.37)

We can find

∂λ lnP (xi, λ) = −1 +
xi
λ
. (4.38)

And so

I(λ) = E
[
x2
i /λ

2 − 2xi/λ+ 1
]

=
E[x2

i ]

λ2
− 2

λ
E[xi] + 1

=
1

λ2
(λ+ λ2)− 2

λ
λ+ 1 =

1

λ
. (4.39)

We can do it using the other expectation too, but let’s not worry about that.
What about a sample of n iid such r.v.’s? The answer is just n/λ.
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Example 4.2.2. Let Xi ∼ Poi(λ). Find µ̂ML. Well,

l(λ) = −nλ+

n∑
i=1

xi lnλ−
∑

lnxi!. (4.40)

And so,

∂λl(λ) = −n+
1

λ

n∑
i=1

xi = 0 =⇒ µ̂ML = X̄. (4.41)

This is unbiased. We also know that

Var(X̄) =
λ

n
. (4.42)

How does this compare with the CRLB? We have an unbiased estimator, and
so

Var(X̄) ≥ 1

nI(λ)
=
λ

n
. (4.43)

In this case, our estimator X̄ does achieve the CRLB, which makes it a good
mle.

Example 4.2.3. Let Xi ∼ N (µ, σ2) where µ is unknown but σ2 is. What is
nI(µ)? Well, for a single observation,

f(xi;µ) =
1√

2πσ2
e−(xi−µ)2/2σ2

; xi, µ ∈ R. (4.44)

Next,

l(xi;µ) =
−1

2
ln
(
2πσ2

)
− 1

2σ2
(xi − µ)2. (4.45)

This the score function. The information is

I(µ) = E
[
l(xi;µ)2

]
= −E

[
∂2
µf(xi;µ)

]
=

1

σ2
. (4.46)

And so,

nI(µ) =
n

σ2
. (4.47)

And so, the CRLB for an unbiased estimator is σ2/n.

Definition 4.2.1. (Efficient Estimator.) Let Y be an unbiased estimator
of a parameter θ in the case of point estimator. The statistic Y is called an
efficient estimator of θ if and only if Var(Y ) attains the Rao-Cramér lower
bound.
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Definition 4.2.2. (Efficiency.) In cases in which we can differentiate w.r.t a
parameter under an integral or summation symbol, the ratio of the Rao-Cramér
lower bound to the actual variance of any unbiased estimator of a parameter is
called the efficiency of that estimator.

Additional Regularity Condition. (the total is 5 after this)

• The pdf f(x; θ) is three times differentiable as a function of θ. Further,
for all θ ∈ Ω, there exists a constant c and a function M(x) such that∣∣∂3

θ ln f(x; θ)
∣∣ ≤M(x), (4.48)

with Eθ0 [M(X)] <∞ for all θ0 − c < θ < θ0 + c and all x in the support
of X.

Theorem 4.2.3. Assume X1, . . . , Xn are iid with pdf f(x; θ) for θ0 ∈ Ω such
that the 5 regularity conditions are satisfied. Suppose further that the Fisher
information satisfies 0 < I(θ0) <∞. Then any consistent sequence of solutions
of the mle equations satisfies

√
n(θ̂ − θ0)

D−→ N
(

0,
1

I(θ0)

)
(4.49)

In practical terms, this tells us that the MLEs for large n have a normal
distribution and that they have variance that approaches CRLB.

Definition 4.2.3. Let X1, . . . , Xn be iid with pdf f(x; θ). Suppose θ̂1n =

θ̂1n(X1, . . . , Xn) is an estimator of θ0 such that
√
n(θ̂1n − θ0)

D−→ N (0, σ2
θ̂1n

).

Then

• The asymptotic efficiency of θ̂1n is defined to be

e(θ̂1n) =
1/I(θ0)

σ2
θ̂1n

(4.50)

• The estimator θ̂1n is said to be asymptotically efficient if the ratio in
the previous item is 1.

• Let θ̂2n be another estimator such that
√
n(θ̂2n−θ0)

D−→ N (0, σ2
θ̂2n

). Then

the asymptotic relative efficiency (ARE) of θ̂1n to θ̂2n is the reciprocal
of the ratio of their respective asymptotic variances, i.e.,

e(θ̂1n, θ̂2n) =
σ2
θ̂2n

σ2
θ̂1n

. (4.51)

Note: MLEs are asymptotically efficient estimators.
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Theorem 4.2.4. Under the assumptions of Theorem 4.2.3., suppose g(x) is a
continuous function of x that is differentiable at θ0 such that g′(θ0) 6= 0. Then

√
n(g(θ̂n)− g(θ0))

D−→ N
(

0,
g′(θ0)2

I(θ0)

)
. (4.52)

Proof. The proof uses previous theorems and the ∆-method.

Theorem 4.2.5. Under the assumptions of Theorem 4.2.3.,

√
n(θ̂n − θ0) =

1

I(θ0)

1√
n

n∑
i=1

∂θ ln f(Xi; θ0) +Rn (4.53)

where Rn
P−→ 0.

Example 4.2.4. Let X1, . . . , Xn be iid Exp(θ) r.v., Find the information con-
tained in the sample about θ. Well,

f(xi; θ) =
1

θ
e−xi/θ, xi > 0, θ > 0. (4.54)

The information is given by

I(θ) = −E[∂2
θ l(θ)] = · · · = − 1

θ2
+

2

θ3
E[xi] =

1

θ2
. (4.55)

So the amount of information contained in the sample is nI(θ) = n/θ2.

Now consider two estimators for θ: Ȳ and nminXi. We know that Ȳ is
unbiased. Let’s check if nminXi is unbiased: E[nminXi] = nE[minXi]. Well,

E[minXi] =

ˆ ∞
0

ygmin(y) dy

=

ˆ ∞
0

yn[1− F (y)]n−1f(y) dy

= . . .

=

ˆ ∞
0

y
n

θ
e−ny/θ dy

=
θ

n
. (4.56)

So E[nminXi] = θ, unbiased.

Now, the CRLB is 1/nI(θ) = θ2/n, which is the smallest possible variance
for an unbiased estimator. Now, Var(Ȳ ) = θ2/n. And so this estimator has
efficiency of 1 and is an efficient estimator. Var(nminXi) turns out to be

θ2 ≥ θ2/n. So, the relative efficiency of θ̂1 and θ̂2 is 1/n. The asymptotic
efficiency is going to be zero.
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4.3 Maximum Likelihood Tests

Consider the two-sided hypothesis

H0 : θ = θ0 Ha : θ 6= θ0. (4.57)

The log likelihood is given by

l(θ) =

n∑
i=1

ln f(Xi; θ). (4.58)

If θ0 is the true value of θ, then asymptotically L(θ0) is the maximum value of
L(θ). Consider the ratio of two likelihood functions

Λ =
L(θ0)

L(θ̂)
≤ 1. (4.59)

If H0 is true, Λ large and is close to 1. If H1 is true, Λ is smaller. For a specified
significance level α, we get a decision rule: Reject H0 if Λ ≤ c where c is such
that α = Pθ0(Λ ≤ c). This is called the likelihood ratio test.

Theorem 4.3.1. Assume the same regularity conditions as for Theorem 4.2.3,
under the null hypothesis H0 : θ = θ0,

−2 ln Λ
D−→ χ2(1). (4.60)

Proof. The proof uses Taylor expansion about θ0 of l(θ) to first order, evaluated

at the mle θ̂.

Define the test statistic χ2
L = −2 ln Λ. The theorem above suggests the de-

cision rule: Reject H0 if χ2
L ≥ χ2

α(1).

Example 4.3.1. Let X1, . . . , Xn be iid N (µ, σ2) r.v. where both µ and σ2 are
unknown. H0 : µ = µ0 and Ha : µ 6= µ0. The null space is {(µ, σ2) : µ =
µ0, σ

2 > 0} and the alternative space is {(µ, σ2) : µ 6= µ0, σ
2 > 0}. The union

of these two spaces is {(µ, σ2) : µ ∈ R, σ2 > 0}. Under the null, µ = µ0 and σ2

is unknown.

∂σ2 l(µ0, σ
2) = − n

σ2
+

1

2σ4

∑
(xi − µ0)2 = 0 =⇒ σ̂2

0 =
1

n

∑
(xi − µ0)2.

(4.61)

And so

L0(θ̂) = (2π)−n/2(σ̂0)−n/2 exp

[
− 1

2σ2
0

∑
(xi − µ0)2

]
. (4.62)
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This is the likelihood in null space. Under the joint null alternative space where
µ ∈ R and σ2 > 0,

l(µ, σ2) = −n
2

ln(2x̄)− n

2
ln
(
σ2
)
− 1

2σ2

∑
(xi − µ)2. (4.63)

We need to estimate both µ and σ2. We have

∂µl(µ, σ
2) =

1

σ2

∑
(xi − µ) = 0 =⇒ µ̂ = x̄ (4.64)

∂σ2 l(µ, σ2) = − n

2σ2
+

1

2σ2

∑
(xi − µ)2 = 0 =⇒ σ̂2 =

1

n

∑
(xi − µ)2. (4.65)

The likelihood in this case is

L(θ̂) = (2π)−n/2(σ̂2)−n/2 exp

[
− 1

2σ2

∑
(xi − x̄)2

]
. (4.66)

Now, we reject if

Λ =
L0

L
= · · · =

(
σ̂2

σ̂2
0

)n/2
< K (4.67)

which is equivalent to when

σ̂2

σ̂2
0

=

∑
(xi − x̄)2∑
(xi − µ0)2

< K2/n ≡ K ′. (4.68)

Now, note that∑
(xi − µ0)2 =

∑
[(xi − x̄) + (x̄− µ0)]

2
=
∑

(xi − x̄)2 + n(x̄− µ0)2.

(4.69)

So, we reject whenever∑
(xi − x̄)2∑

(xi − x̄)2 + n(x̄− µ0)2
< K2/n =

1

1 + n(x̄−µ0)2∑
(xi−x̄)2

< K ′ (4.70)

which is equivalent to

n(x̄− µ0)2∑
(xi − x̄)2

>
1

K
− 1 ≡ K ′′ ⇐⇒ n(x̄− µ0)2

1
n−1

∑
(xi − x̄)2

=
n(x̄− µ0)2

S2
> (n− 1)K ′′,

(4.71)

where K ′′ is another constant. So we reject whenever∣∣∣∣ x̄− µ0

S/
√
n

∣∣∣∣ >√(n− 1)K ′′ (4.72)

where the LHS is a t-statistic with (n− 1) df.
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In practice, there two other likelihood-related tests. A natural statistic is
based on the asymptotic distribution of θ̂. Consider the statistic

χ2
W =

{√
nI(θ̂)(θ̂ − θ0)

}2

. (4.73)

Because I(θ) is a continuous function, I(θ̂)
P−→ I(θ0) under the null hypothesis.

So, under the null hypothesis, χ2
W has an asymptotic χ2-distribution with one

degree of freedom. So the decision rule is to reject H0 if χ2
W ≥ χ2

α(1). This is
often referred to as a Wald-type test.

The third test is called the scores-type test. The scores are the components
of the vector

S(θ) = (∂θ ln f(X1; θ), . . . , ∂θ ln f(Xn; θ))
′
. (4.74)

In our notation we have

1√
n
l′(θ0) =

1√
n

n∑
i=1

∂θ ln f(Xi; θ0). (4.75)

Define the statistic

χ2
R =

(
I ′(θ0)√
nI(θ0)

)2

(4.76)

The decision rule is to reject H0 in favor of Ha if χ2
R ≥ χ2

α(1).

Example 4.3.2. (MLR test) Suppose we want to test whether or not the mean
number of goals scored in all English league soccer games is 3. Suppose X ∼
Poi(λ). We set H0 : λ = 3 and Ha : λ 6= 3. The joint pdf is

L(λ) = p(xi|λ) =
e−nλλ

∑
xi∏

xi!
, xi = 0, 1, 2, 3, . . . (4.77)

Say n = 380 and x̄ = 2.534. We can find the MLE of λ, λ̂ = x̄. The null space
is {λ : λ = 3}, and the alternative space is {λ : λ 6= 3.λ > 0}. The joint space
is {λ : λ > 0}. Now,

L(λ̂0) =
e−380·33963

. . .
(4.78)

and

L(λ̂) =
e−380·2.5342.534963

. . .
(4.79)

and so

Λ =
L0

L
(4.80)

Asymptotically, −2 ln Λ ∼ χ2(1). We reject if −2 ln Λ > χ2
1,0.05 = 3.84. We find

that −2 ln Λ = 29.03 > 3.84, so we reject.
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Example 4.3.3. (Wald test)

χ2
W =

 λ̂− λ0

1/

√
nI(λ̂)

2

∼ χ2(1)

under H0. The information can be found to be n/λ. Plugging in the numbers
we find

χ2
W =

[
x̄− λ0

1/
√
n/x̄

]2

=
[
(2.534− 3)/(1/

√
380 · 1/2.534)

]2
= 32.56 > 3.84,

so we still reject.

Example 4.3.4. (Score test)

χ2
R =

(I ′(θ0))2

nI(θ0)
= · · · = (−380 + 963/3)2

380/3
= 27.48 ∼ χ2.

So we reject as well.

So, χ2
R is in general not as conservative as χ2

W . The LRT is somewhere in
the middle.

4.4 Multiparameter Case: Estimation

In this section we consider the case where θ is a vector of p parameters. Let
X1, . . . , Xn be iid with common pdf f(x;θ) where θ ∈ Ω ∈ Rp. The likelihood
function and its log are given by

L(θ) =

n∏
i=1

f(xi;θ) (4.81)

l(θ) = lnL(θ) =

n∑
i=1

ln f(xi;θ). (4.82)

There are more regularity conditions to make the theory work, but we won’t
worry about those. We will also worry only about the continuous case, because
the discrete cases can be treated in similar ways.

Here are some facts: just like before, L(θ) is maximized at the true value
of θ. The quantity that maximizes L(θ) is called the maximum likelihood

estimator and we denote it θ̂. It also holds that η̂ = g(θ̂) if η = g(θ).

Theorem 4.4.1. Let X1, . . . , Xn be iid with pdf f(x;θ) for θ ∈ Ω. Assume
that the regularity conditions hold, then
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1. The likelihood equation,

∂θl(θ) = 0 (4.83)

has a solution θ̂n such that θ̂
P−→ θ.

2. For any sequence that satisfies the first item

√
n(θ̂n − θ)

D−→ Np(0, I−1(θ)). (4.84)

Theorem 4.4.2. Let X1, . . . , Xn be iid with pdf f(x;θ) for θ ∈ Ω. Assume

the regularity conditions hold. Let θ̂n be a sequence of consistent solutions of
the likelihood equation. Then θ̂n are asymptotically efficient estimates; that is,
for j = 1, . . . , p,

√
n(θ̂i,j − θj)

D−→ N (0, [I−1(θ)]jj). (4.85)

Example 4.4.1. Let Xi be iid N (µ, σ2). Find MLE for µ and σ2. Now,
θ = (µ, σ2), and

L(θ) =
∏

f(xi|θ) =
∏[

(2πσ2)1/2 exp

(
− 1

2σ2
(xi − µ)2

)]
. (4.86)

Then

∂µl(θ) =
1

σ2

∑
(xi − µ) = 0 =⇒ µ̂ = x̄ (4.87)

and

∂σ2 l(θ) =
−n
2σ2

+
1

2σ4

∑
(xi − µ)2 = 0 =⇒ σ̂2 =

1

n

∑
(xi − µ)2. (4.88)

What is the information in the multiparameter setting? It’s a matrix with
elements

Ijk = −E
[
∂2 ln f(xi|θ)

∂θj∂θk

]
(4.89)

Back to the normal situation:

I(θ) = −E
[

− 1
σ2 − 1

σ4 (xi − µ)
− 1
σ4 (xi − µ) 1

2σ4 − 1
σ6 (xi − µ)2

]
(4.90)

=

[
1
σ2 0
0 − 1

2σ4 + 1
σ6σ

2

]
=

[
1
σ2 0
0 1

2σ4

]
(4.91)

CRLB for x̄ is

1

nI11(θ)
=
σ2

n
. (4.92)

The CRLB for σ̂2 is

1

nI22(θ)
=

2σ4

n
. (4.93)
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4.5 Multiparameter Case: Testing

Here we talk about likelihood ratio tests in the multiparameter setting. Recall
that the test statistic is

Λ =
L(θ̂0)

L(θ̂)
(4.94)

where the numerator is maximized in null space and the denominator is max-
imized in the joint (null + alternative) space. We reject if Λ < c. c is found
from the null distribution.

Example 4.5.1. Let Xi ∼ exp(θ) and Yi ∼ exp(µ). H0 : µ = θ and Ha : µ 6= θ.
The null space is {{θ, µ} : θ = µ > 0}. The alternative space is {{θ, µ} : θ 6=
µ, θ, µ 6= 0}. The joint space is just {{θ, µ}, θ > 0, µ > 0}. It’s easy to see that

L(θ, µ|X,Y ) =
1

θn
e
∑n xi/θ

1

µm
e
∑m yi/µ. (4.95)

From here one finds that under H0 : θ = µ:

l(Θ0) = −(n+m) ln θ − 1

θ

(∑
xi +

∑
yi

)
. (4.96)

And so

∂θl(θ) = 0 =⇒ θ̂0 =
1

n+m

(∑
xi +

∑
yi

)
. (4.97)

With this, we can plug back in to calculate the numerator:

L(Θ̂0) = · · · =
(

1

n+m

∑
xi +

∑
yj

)−n−m
exp(−n−m). (4.98)

In the joint space,

l(Θ) = −n ln θ − 1

θ

∑
xi −m lnµ− 1

µ

∑
yj . (4.99)

And so

∂θl(Θ) = 0 =⇒ θ̂ = x̄ (4.100)

∂µl(µ) = 0 =⇒ µ̂ = ȳ. (4.101)

With these,

L(Θ̂) = . . . (4.102)

=
1(

1
n

∑
xi
)n exp

[
− 1

1
n

∑
xi

∑
xi

]
1(

1
m

∑
yi
)m exp

[
− 1

1
m

∑
yi

∑
yi

]
(4.103)

=
1(

1
n

∑
xi
)n e−n 1(

1
m

∑
yi
)m e−m. (4.104)
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Putting everything together, we find

Λ =
L0

L
= · · · =

1
(n+m)−n−m (

∑
xi +

∑
yj)
−n−m

1
nn

1
mm (

∑
xi)
−n

(
∑
yi)
−m . (4.105)

We reject if Λ < c, iff

(n+m)n+m

nnmm

(
∑
xi)

n
(
∑
yi)

m

(
∑
xi +

∑
yj)

n+m < c (4.106)

iff (letting c absorb the constant)

(
∑
xi)

n
(
∑
yi)

m

(
∑
xi +

∑
yj)

n+m < c′ (4.107)

What does the distribution of Λ look like? Notice that we reject if

Λ =
(n+m)n+m

nnmm

(
∑
xi)

n
(
∑
yi)

m

(
∑
xi +

∑
yj)

n+m (4.108)

=
(n+m)n+m

nnmm

( ∑
xi∑

xi +
∑
yj

)n( ∑
yi∑

xi +
∑
yj

)m
(4.109)

=
(n+m)n+m

nnmm
TnT (1− T )m < c (4.110)

which is akin to saying that we reject if T < a or T > b when these constants
satisfy

an(1− a)m = bn(1− b)n. (4.111)

What is the distribution of T under H0? Note that under H0,
∑
xi ∼ Γ(n, θ)

and
∑
yi ∼ Γ(m,µ = θ). Use transformation method to show that T ∼ β(n,m).

Reminder: in large samples, −2 ln Λ ∼ χ2
1



Part 5

Sufficiency

5.1 Measures of Quality of Estimators

Definition 5.1.1. For a given positive integer n, Y = u(X1, . . . , Xn) is called
a minimum variance unbiased estimator (MVUE) of the parameter θ if
Y is unbiased, i.e., E[Y ] = θ, and if Var(Y ) ≤ Var(Y ′) where Y ′ is any other
unbiased estimator of θ.

From a different standpoint, consider the data X1, . . . , Xn from a density
f(xi; θ) and let Y = u(X1, . . . , Xn) be a statistic from which we will generate
the estimator. Then δ(Y ) is the estimator of θ. δ is called the decision rule.
A value of δ(Y ) is called a decision.

The decision can be right or wrong, and how far off we are can be quantified
by a loss function L(θ, δ(Y )). The expectation value of L(θ, δ(Y )) is called
the risk function.

R(θ, δ) = E[L(θ, δ(Y ))] =

ˆ ∞
−∞

L(θ, δ(Y ))fY (y; θ) dy. (5.1)

We would like to minimize this, but usually can’t be the loss is dependent on
θ. Instead we might choose as our decision function the one that minimizes the
maximum of the risk function, i.e. pick the best worst case scenario.

If

max
θ

[R(θ, δ0(Y ))] ≤ max
θ

[R(θ, δ0(Y ))] (5.2)

then δ0 is called the minimax decision function.

Example 5.1.1. Consider sample X1, . . . , X25 r.v. from N (θ, 1). Let Y =
X̄ and L[θ, δ(Y )] = (θ − δ(Y ))2. Compare two decision functions δ given by

59
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δ1(y) = y and δ2(y) = 0 for y ∈ R. Then,

R(θ, δ1) = E[(θ − Y )2] =
σ2

n
=

1

25
R(θ, δ2) = E[(θ − 0)2] = θ2 (5.3)

If θ = 0, then δ2 is a good decision rule, and R(0, δ2) = 0. If θ differs by
more than 1/5 then R(θ, δ2) > R(θ, δ1). So we choose the function that has the
smallest max:

max
θ
R(0, δ1) = max

θ
(1/25) = 1/25. (5.4)

If we restrict estimators to those such that E[δ(Y )] = θ and L(θ, δ(Y )) =
(θ − δ(Y ))2, the decision function that minimizes the risk function yields an
unbiased estimator with the minimum variance. We call this the MVUE.

If we replace E[δ(Y )] = θ with some other condition, then δ(Y ) (if it exists)
that minimizes E[(θ − δ(Y ))2] uniformly in θ, is called the minimum-max
squared estimator.

The loss function given by E[(θ − δ(Y ))2] = MSE(δ(Y )) = [Bias(δ(Y ))]2 +
Var(δ(Y )). This makes sense, because if unbiased (bias = 0) then minimizing
risk exactly corresponds to minimizing the variance.

Note that the MSE – L(θ, δ(Y )) = E[(θ−δ(Y ))2] isn’t the only loss function
that people use. For example, we could also use L(θ, δ(Y )) = |δ − δ(Y )|, which
is called the absolute error loss function.

In a nutshell, the MSE is bias2 + variance. So if we limit ourselves to unbi-
ased estimators and minimize the variance then we’ll get the MVUE.

We might want to to trade some bias for a reduction in variance.

5.2 A Sufficient Statistic for a Parameter

A sufficient statistic is one that captures all of the available information in the
sample concerning a parameter

Definition 5.2.1. Let X1, . . . , Xn denote a random sample of size n from a
distribution that has pdf/pmf f(x; θ), θ ∈ Ω. Let Y1 = u1(X1, . . . , Xn) be a
statistic whose pdf/pmf is fY1

(y1; θ). Then Y1 is a sufficient statistic for θ iff∏n
i=1 f(xi; θ)

fY1
[u1(X1, . . . , Xn); θ]

= H(x1, . . . , xn) (5.5)

where H(x1, . . . , xn) does not depend upon θ ∈ Ω.

Another way to put this is that if we condition the joint pdf of X1, . . . , Xn

on Y1 and that conditional distribution, f(X1, . . . , Xn;Y1) does not depend on
θ then Y1 is a sufficient statistic for θ.
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Example 5.2.1. Consider Xi ∼ Ber(p) iid. Then f(xi) = pxi(1 − p)1−xi . Is
Y =

∑
xi a sufficient statistic for p? Well,∏n

P (Xi = xi)

P (Y1 = y1)
=

py(1− p)n−y(
n
y

)
py(1− p)n−y

=
1(
n
y

) (5.6)

which does not depend on p, so Y is sufficient.

Theorem 5.2.1 (Neyman – Factorization Theorem). Let X1, . . . , Xn be a ran-
dom sample from a distribution that has a pdf or pmf f(x; θ), θ ∈ Ω. The
statistic Y1 = u1(X1, . . . , Xn) is a sufficient statistic for θ iff we can find two
nonnegative functions k1, k2 such that

f(x1; θ) . . . f(xn; θ) = k1[u1(x1, . . . , xn); θ]k2(x1, . . . , xn)

where k2 does not depend on θ.

Example 5.2.2. Let X1, . . . , Xn ∼ Poi(λ). We want to find a sufficient statistic
for λ. Well,

p(X1, x2, . . . , Xn;λ) =

n∏
i=1

e−λλxi

xi!

= e−nλλ
∑
xi

1∏
xi!

=
[
e−nλλ

∑
xi
] [ 1∏

xi!

]
(5.7)

The first term is k1 and the second term is k2.
∑
xi is sufficient for λ. We

can verify that
∑
xi is sufficient using the definition. We need to know the

distribution of
∑
xi, which is just Poi(nλ). Well,

P (x1, . . . , Xn;λ)

PY (y)
=

e−nλλy∏n
i=1 xi!

e−nλ(nλ)y

y!

=
y!∏
xi!

1

ny
. (5.8)

which is something that does not depend on λ, which means
∑
xi is sufficient.

5.3 Properties of a Sufficient Statistic

There are many sufficient statistics for a parameter θ. Any “statistic” that
contains all the information in the sample useful for estimating θ is efficient.
The observations themselves (X1, . . . , Xn) are sufficient, as well as the order
statistics (X(1), . . . , X(n)). Any 1-1 function of a sufficient statistic is sufficient.

Factorization theorem says: f(x1, . . . , xn) = k1[Y1; θ]K2[x1, . . . , xn] where
Y1 is a sufficient statistic.

The sufficient statistic that best captures the information about θ in the
sample is called the minimal sufficient statistic.
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Theorem 5.3.1 (Rao-Blackwell). Let X1, . . . , Xn, n a positive integer, denote
a random sample from a distribution that has a pdf/pmf f(xi; θ), θ ∈ Ω. Let
Y1 = u1(X1, . . . , Xn) be a sufficient statistic for θ, and Y2 = u2(X1, . . . , Xn), not
a function of Y1 alone, be an unbiased estimator of θ. Then E[Y2|y1] = ϕ(y1)
defines a statistic ϕ(Y1). This statistic ϕ(Y1) is a function of the sufficient
statistic for θ; it is an unbiased estimator of θ, and its variance is less than or
equal to that of Y2.

Rao-Blackwell tells us that if we want to find the minimum variance unbiased
estimator (MVUE) we can restrict our search to functions of sufficient statistics.

Theorem 5.3.2. Let X1, . . . , Xn be random sample from f(xi; θ). If a sufficient

statistic Y1 = u1(X1, . . . , Xn) for θ exists and if a mle θ̂ of θ also exists uniquely,

then θ̂ is a function of Y1 = u1(X1, . . . , Xn).

Example 5.3.1. Let X1, . . . , Xn be a random sample from a Weibull distribu-
tion.

f(xi; θ) =
2xi
θ
e−x

2
i /θ; xi > 0. (5.9)

The likelihood function is

L(θ) = · · · =
(

2

θ

)n( n∏
xi

)
e−

∑
x2
i /θ. (5.10)

Find sufficient statistic :

K1(Y1; θ) =

(
2

θ

)n
e−

∑
x2
i /θ

K2(X1, . . . , Xn) =
∏

xi. (5.11)

So, Y1 =
∑
x2
i is our sufficient statistic. What is the expectation of Y1? It turns

out that E[Y1] = nθ =⇒ θ̂ = 1
n

∑
x2
i , and so E[θ̂] = θ =⇒ MVUE.

5.4 Completeness and Uniqueness

5.4.1 Completeness

Definition 5.4.1. Let the r.v. Z of either the continuous type of the discrete
type have a pdf or pmf that is one member of the family {h(z; θ) : θ ∈ Ω}.
If the condition E[u(Z)] = 0∀θ ∈ Ω, requires that u(z) be zero except on a
set of points that has probability zero for each h(z; θ), θ ∈ Ω, then the family
{h(z; θ) : θ ∈ Ω} is called the complete family of probability density of mass
functions.

Example 5.4.1. If az2 + bz + c = 0 for more than two values of z then
a = b = c = 0. Use this show that the family of binomial distributions with
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n = 2, p = θ is complete.

Set E[u(Z)] = 0. Well,

E[u(Z)] =

2∑
z=0

u(Z)

(
2

z

)
θz(1− θ)2−z

= u(0)(1− θ)2 + 2u(1)θ(1− θ) + u(2)θ2

= [. . . ]θ2 + [. . . ]θ + [. . . ]

= 0

iff u(0) = u(1) = u(2) = 0. So, the binomial family (2, θ) is complete.

Example 5.4.2. Let

f(x; θ) =

{
1/2θ, x ∈ (−θ, θ), θ ∈ R+

0, else
(5.12)

Is this family complete? Well, take u(X) = X, then because E[X] = · · · = 0
but u(X) = X 6= 0, the family is NOT complete.

5.4.2 Uniqueness

Theorem 5.4.1 (Lehmann and Scheffé). Let X1, . . . , Xn, n a fixed positive
integer, denote a random sample from a distribution that has a pdf or pmf
f(x; θ), θ ∈ Ω, let Y1 = u1(X1, . . . , Xn) be a sufficient statistic for θ, and let the
family {fY1(y1; θ) : θ ∈ Ω} be complete. If there is a function of Y1 that is an
unbiased estimator of θ, then this function of Y1 is the unique MVUE of θ.

In this case, we say that Y1 is complete and sufficient.

Example 5.4.3. Let X1, . . . , Xn be r.v. iid of Uniform (0, θ) with 0 < θ <∞.
We want to find a sufficient statistic for θ. Well,

f(x1, . . . , xn) =
1

θn
I(X(1) > 0)I(X1 < θ). (5.13)

Using factorization theorem, we have that

K1[Y1, θ] =
1

θn
I(Y(n) > 0)

K2[X1, . . . , Xn] = I(X(1) > 0). (5.14)

So, Y(n) (the max) is sufficient for θ. This turns out to be minimal too. Now,

g(n)(Y ) = nyn−1θ−n (5.15)

is the density for Y(n). Suppose g(t) is a function that satisfies E[g(t)] = 0, so

E[g(t)] =

ˆ θ

0

g(t)ntn−1θ−n dt = 0. (5.16)
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If this holds then taking ∂θ of both sides we get θ−1ng(θ) = 0 =⇒ g(θ) = 0.
So the family of fY1(y1) is complete.

Now, E[Y1] =
´ θ

0
xnxn−1/θ = nθ/(n+ 1), and so (n+ 1)Y1/n is an unbiased

estimator that is a function of a sufficient statistic that has a complete distri-
bution (Y1 is complete sufficient statistic). So (n + 1)/nX(n) ≡ (n + 1) max /n
is a MVUE.

5.5 The Exponential Class of Distributions

If we can determine that a distribution belongs to this class, a complete sufficient
can be readily determined. Consider a family {f(x, θ) : θ ∈ Ω} where Ω = {θ :
γ < θ < δ} where γ, δ are constants in the extended reals (they may be ±∞)
and

f(x; θ) =

{
exp [p(θ)K(x) +H(x) + q(θ)] , x ∈ S
0, else

(5.17)

where S is the support of X.

Definition 5.5.1 (Regular Exponential Class). A pdf of the form above is said
to be a member of the regular exponential class of probability density or
mass functions if

1. S the support of X, does not depend on θ.

2. p(θ) is a nontrivial continuous function of θ ∈ Ω

3. • If X is continuous, then each K ′(x) 6≡ 0 and H(x) is a continuous
function of x ∈ S.

• If X is a discrete, then K(x) is a nontrivial function of x ∈ S.

If the density is the regular exponential class, for a sample, we can write
the density as exp [p(θ)

∑
K(xi) +

∑
H(xi) + nq(θ)], and so the factorization

theorem tells us that the statistic Y =
∑
K(xi) is sufficient.

Theorem 5.5.1. Let X1, . . . , Xn denote a random sample from a distribution
that represents a regular case of the exponential class, with pdf or pmf given as
above. Consider the statistic Y1 =

∑n
K(xi). Then

• The pdf or pmf for Y1 has the form

fY1
(y1; θ) = R(y1) exp [p(θ)y1 + nq(θ)] (5.18)

for y1 ∈ SY1
and some function R(y1). Neither SY1

nor R(y1) depends on
θ.

• E[Y1] = −nq′(θ)/p′(θ).
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• Var[Y1] = n 1
p′(θ)3 {p′′(θ)q′(θ)− q′′(θ)p′(θ)}

Theorem 5.5.2. Consider f(x; θ), γ < θ < δ, be a pdf or pmf of a r.v. X
whose distribution is a regular case of the exponential class. Then if X1, . . . , Xn

is a random sample from this distribution then Y1 =
∑n

K(Xi) is a complete
sufficient statistic for θ.

Theorem 5.5.3. If Y1 is a complete sufficient statistic and ϕ(Y1) is an unbiased
estimator for θ, then ϕ(Y1) is the MVUE.

Example 5.5.1. Consider Γ(2, θ). Then

f(x; θ) = xe−x/θθ−2, x > 0

= exp [−x/θ + lnx− 2 ln θ] (5.19)

where p(θ) = −1/θ, K(x) = x, H(x) = lnx, and q(θ) = −2 ln θ. For a sample of
size n, we just have exp [(−1/θ)

∑
xi +

∑
lnxi − 2n ln θ], and so Y1 =

∑
xi ∼

Γ(2n, θ) is a complete sufficient statistic. We know what Γ(2n, θ) looks like, so
we can go ahead and put it in the form

fY1(y1) =
y2n−1

1

Γ(2n)
exp

[
−1

θ
y1 − 2n ln θ

]
≡ R(y1) exp [p(θ)y1 + nq(θ)] . (5.20)

So, p′(θ) = 1/θ2 and q′(θ) = −2/θ and p′′(θ) = −2/θ3 and q′′(θ) = 2/θ2. Using
the theorem we get E[Y1] = 2nθ and Var[Y1] = 2nθ2, which is what we would
expect for Γ(2n, θ).

Example 5.5.2. Let X1, . . . , Xn be iid with N (θ, σ2). Find the MVUE of θ.
Well,

f(x; θ) = (2πσ2)−1/2 exp

[
−1

2σ2
(x− θ)2

]
= exp

[
θ

σ2
x− x2

2σ2
− ln

√
2πσ2 − θ2

2σ2

]
. (5.21)

Identifying the functions, we find that Y1 =
∑
Xi is a complete sufficient statis-

tic for θ. Also, E[Y1] = nθ, so X̄ is the MVUE for θ.

5.6 Functions of a Parameter

In this section we’re interested in finding the MVUE of a parameter, say θ. Un-
like MLEs, MVUEs don’t have the invariance property. Additionally, MVUEs
don’t have known asymptotic distributions either. There are two main ways we
can try to find the MVUE of a function of θ:

• We can use the conditional expectation of an unbiased estimator given a
sufficient statistic.
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• We can look at the expected value of a sufficient statistic (plugged into
the function) and correct the bias (if we can).

Example 5.6.1. Let’s say we have X1, . . . , Xn, iid with Xi ∼ Poi(θ). We want
to find the MVUE for P (x ≤ 1). Well,

P (X ≤ 1) =

1∑
k=0

e−θθk

k!
. (5.22)

Now, a sufficient statistic for θ is Y =
∑
Xi. Then

P (X1 ≤ 1|Y = y) = P (X1 = 0|Y = y) + P (X1 = 1|Y = y)

=
P (X1 = 0 ∩ Y =

∑
i=2 xi = y)

P (Y = y)
+
P (X1 = 1 ∩ Y =

∑
i=2 xi = y − 1)

P (Y = y)

=
eθe−(n−1)θ((n− 1)θ)y/y!

e−nθ(nθ)y/y!
+
θeθe−(n−1)θ((n− 1)θ)y−1/(y − 1)!

e−nθ(nθ)y/y!

= . . .

=

(
n− 1

n

)y [
1 +

y

n− 1

]
. (5.23)

This is the MVUE of P (X ≤ 1).

Example 5.6.2. Let X1, . . . , Xn with Xi ∼ Exp(θ). Find the MVUE for
Var[Y1]. We know that Var[Y1] = θ2. We note that this is a member of the
regular exponential class. The likelihood function is

L(θ) = θ−n exp

[
−1

θ

∑
xi

]
. (5.24)

∑
Xi is a sufficient statistic and is complete, so X̄ is an MVUE. Now, we try

(X̄)2, well:

E[X̄2] = Var[X̄] + E[X̄]2 =
θ2

n
+ θ2 =

n+ 1

n
θ2 (5.25)

is biased. So, nX̄2/(n + 1) is an unbiased estimator of θ2, and it is a function
of the minimal sufficient statistic

∑
Xi. So it is the MVUE of Var[Y1] = θ2

The distribution of the MVUE is not necessarily known. However, CIs are
often be generated by using bootstrap samples and calculating the θ̂MVUE and
SE(θ̂MVUE) for each where

SE =

√
1

#bootstrap− 1

∑[∑
θ̂∗ − ¯̂∗

θ
]2

(5.26)
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5.7 The Case of Several Parameters

Definition 5.7.1. Let X1, . . . , Xn denote a random sample from a distribution
that has a pdf or pmf f(x;θ) where θ ∈ Ω ⊂ Rp. Let S denote the support of
X. Let Y be an m-dimensional random vector of statistics Y = (Y1, . . . , Ym)′

where Yi = u(X1, . . . , Xn) for i = 1, . . . ,m. Denote the pdf or pmf of Y by
fY (y;θ) for y ∈ Rm. The random vector of statistics Y is jointly sufficient
for θ iff ∏n

i=1 f(xi;θ)

fY (y;θ)
= H(x1, . . . , xn) (5.27)

for all xi ∈ S where H(. . . ) does not depend on θ.

This means that the factorization theorem that we used before extends into
the multiparameter case.

Example 5.7.1. Suppose X1, . . . , Xn are iid N (µ, σ2) r.v.’s. Find sufficient
statistics for both unknowns. The likelihood function is

L(θ) = (2π)−n/2(σ2)−n/2 exp

[
− 1

2σ2

∑
(xi − µ)2

]
= . . .

= (2π)−n/2(σ2)−n/2 exp

[
− 1

2σ2

(∑
x2
i − 2µ

∑
xi − nµ2

)]
(5.28)

The factorization theorem tells us that
∑
x2
i and

∑
xi are sufficient statistics

for µ, σ2. Now, X̄ is an unbiased estimator for µ and S2 = (1/(n− 1))
∑
X2
i is

an unbiased estimator for σ2, they are both MVUEs.

Definition 5.7.2. Let X be a r.v. with pdf/pmf f(x;θ) with θ ∈ Ω ⊂ Rm. If
X is continuous, assume that the support of X, S = (a, b) where a and/or b can
be ±∞. If X is discrete, assume that S = {a1, . . . , }. Suppose f(x;θ) is of the
form

f(x;θ) =

{
exp [

∑m
xipj(θ)Kj(x) +H(x) + q(θ1, . . . , θm)] , x ∈ S

0, else
(5.29)

Then we say that this pdf/pmf is a member of the exponential class. We say
it is a regular case of the exponential family if, in addition,

• S does not depend on the vector of parameters θ

• The space Ω contains a nonempty, m-dimensional open rectangle

• the pj(θ) with j = 1, . . . ,m are nontrivial, functionally independent, con-
tinuous functions of θ.

• and, depending on whetherX is continuous or discrete, one of the following
holds, respectively:
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– if X is continuous, then the derivatives K ′j(x) for j = 1, . . . ,m are
continuous on (a, b) and no one is a linear homogeneous function of
the others, and H(x) is a continuous function on (a, b).

– if X is discrete, the Kj(x) with j = 1, . . . ,m are nontrivial functions
of x on S and no one is a linear homogeneous function of the others
.

Theorem 5.7.1. If f is a member of the regular exponential class with Y =∑
Kj(x) being a sufficient statistic then

R(Y ) exp
[∑

pj(θ)Yj + nq(θ)
]

(5.30)

is the joint density of the sufficient statistic.

5.8 Minimal Sufficiency and Ancillary Statistics

The sufficient statistics that best summarizes the information about θ is called
minimal. In general, if the distribution depends on K parameters then we can
find K minimal sufficient statistics.

Example 5.8.1. Let X1, . . . , Xn be random sample from the uniform (θ−1, θ+
1). f(x1, . . . , xn) = 1/2; Y(1) > θ − 1 and Y(n) < θ + 1. Both Y(1) and Y(n) are
jointly sufficient for θ (and are minimal).

Theorem 5.8.1. Complete and sufficient statistics are all minimal, but not all
minimal sufficient statistics are complete.

5.8.1 Other types of families of distributions

Theorem 5.8.2. Let f(x) be a valid density function, then (1/σ)f((x− µ)/σ)
is also a valid ddensity for σ > 0.

Definition 5.8.1 (Location family). Let f(x) be any density. Then the family
of density functions f(x− µ), indexed by −∞ < µ <∞, is called the location
family with standard density f(x), and µ is called the location parameter for
the family.

Example 5.8.2. • Normal distributions with the same variance

• Cauchy

• Double exponential

• Shifted exponential

Definition 5.8.2 (Scale family). Let f(x) be any density. Then the family of
densities, assuming that σ > 0, given by (1/σ)f(x/σ) is called a scale family
with standard density f(x) and scale parameter σ.
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Example 5.8.3. • Normals with fixed µ.

• Gamma distributions with fixed α

• Double exponential

•

Definition 5.8.3 (Location-scale family). Let f(x) be any density. For any µ
finite and σ > 0. Then the family (1/σ)f(x/σ) indexed by parameter µ, σ is
called the location-scale family with standard density f(x). µ is the location
parameter and σ is called the scale parameter.

Example 5.8.4.

Normal distributions

Cauchy distributions

Definition 5.8.4 (Location-invariant statistics). Location-invariant statistics
are statistics that do not change when used within a location framework.

Example 5.8.5. S2 = (1/(n − 1))
∑

(xi − x̄)2 for xi ∈ N (µ, σ2). What is S2

for Xi + µ? The answer is NO. So S2 is an location-invariant statistic.

Example 5.8.6. The range is also a location-invariant statistic.

Definition 5.8.5 (Scale-invariant statistics). Scale-invariant statistics are statis-
tics that do not change when used within a scale framework.

Example 5.8.7. Suppose Zi = σXi. Then X1/(X1 +X2) is an scale-invariant
statistic. Another example is the ratio between the min and the max.

Definition 5.8.6 (Location-scale-invariant statistics). Location-scale-invariant
statistics are statistics that do not change when used within a location-scale
framework.

Example 5.8.8. Consider Zi = µ + σXi then (Xi − µ)/Sx is a location-scale
invariant statistic.

5.9 Sufficiency, Completeness, and Independence

Ancillary statistics are statistics with distributions that do not depend on the
parameter(s) of interest and contain no information about the parameter(s) of
interest. Ancillary statistics are kind of the like the “opposite” of sufficient
statistics.

Definition 5.9.1 (Ancillary statistic). An ancillary statistic is a statistic whose
distribution does not depend on θ. To be more precise, the statistic S(~x) is
ancillary for θ is the same for all values of θ ∈ Ω.
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Example 5.9.1. S2 is an ancillary statistic. From a normal, S2 dependence
on θ gets canceled out. Explicitly, let X1, . . . , Xn be iid N (µ, σ2) and let S2 =
(1/(n− 1))

∑
(xi− x̄)2. We know that (n− 1)S2/σ2 ∼ χ2

n−1. So S2 ∼ (σ2/(n−
1))χ2

n−1. Now, χ2
n−1 = Γ((n− 1)/2, 2). So, S2 has nothing to do with µ. So we

say S2 is ancillary for the mean: {{µ, σ2} : µ ∈ R, σ2 = σ2
0}, but not ancillary

for the variance: {{µ, σ2} : µ ∈ R, σ2 > 0}. It’s also worth noting that S2 can
be ancillary for any location family.

Theorem 5.9.1 (Basu’s Theorem). Let X1, . . . , Xn be iid from a density f(x; θ)
with θ ∈ Ω. Suppose that the statistic Y1 is complete sufficient for θ and
Z = u(X1, . . . , Xn) be any other statistic that is NOT a function of Y1 alone.
If the distribution of Z does not depend on θ (that is, Z is ancillary for θ) then
Z is INDEPENDENT of the statistic Y1.

Consider a random sample from N (µ, σ2), then
∑
Xi is complete sufficient

and S2 is ancillary for µ. Basu’s Theorem tells us that
∑
Xi (or X̄) and S2 are

independent.
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6.1 Most Powerful Tests

Recall that power is the probability that H0 is true provided that Ha is true.

Definition 6.1.1. Let C denote the subset of the sample space. We say that C
is the best critical region of size α for testing the simple hypothesis H0 : θ = θ′

against the alternative simple hypothesis H1 : θ = θ′′ if

• Pθ′ [X ∈ C] = α

• And for every subset A of the sample space

Pθ′ = α =⇒ Pθ′′ [X ∈ C] ≥ Pθ′′ [X ∈ A]. (6.1)

Theorem 6.1.1 (Neyman-Pearson Theorem). Let X1, . . . , Xn denote a random
sample from a distribution that has pdf or pmf f(x; θ). Then the likelihood of
X1, . . . , Xn is

L(θ;x) =

n∏
i=1

f(xi; θ). (6.2)

Let θ′ and θ′′ be distinct fixed values of θ so that Ω = {θ : θ = θ′, θ′′}, and let
k be a positive number. Let C be a subset of the sample space such that

1. For each point x ∈ C

L(θ′;x)

L(θ′′;x)
≤ k (6.3)

2. For each point x ∈ Cc

L(θ′;x)

L(θ′′;x)
≥ k (6.4)

3. α = PH0 [X ∈ C)].

Then C is a best critical region of size α for testing the simple hypothesis
H0 : θ = θ′ against the alternative hypothesis H1 : θ = θ′′.

The test that maximizes the the power of θA for a critical region is

L(θ′)

L(θ′′)
< K. (6.5)

The value of K is chosen so that the test has the desired α level. And we call
such a test the most powerful test for H0 versus Ha.
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Example 6.1.1. Suppose we have f(x) = (1/θ2)xe−x/θ with x > 0; θ > 0.
Find the most powerful test for H0 : θ = 1 and HA : θ = 2 (actually we’re
interested in the composite alternative θ > 1). Well, the likelihood functions
are

L(θ0) = xe−x, L(θA) = (1/4)e−x/2. (6.6)

The test is based on

L(θ0)

L(θA)
= 4e−x/2 < K =⇒ x > −4 ln(K/4) ≡ K ′. (6.7)

We want to find K ′ for α = 0.05. Well,

P (x > K ′|θ = θ0 = 1) = α = 0.05 =

ˆ ∞
K′

xe−x dx = 0.05 (6.8)

so

K ′ = 4.473. (6.9)

So, we reject if x < 4.473. This is the most powerful (MP) test.

6.2 Uniformly Most Powerful Test

Definition 6.2.1. A test is called uniformly most powerful (UMP) test
if the form of the rejection region does not depend on the specific value of the
alternative parameter θA (that is, if X > C for any constant C).

In our example above, the test is UMP for HA : θ > 1.

Example 6.2.1. Suppose X is a single observation from f(x; θ) = θxθ−1 with
0 ≤ x ≤ 1, with H0 : θ = 2, Ha : θ = 1. We can easily find that

L(θ0)

L(θA)
=

2x

1
= 2x < K =⇒ x < K ′. (6.10)

Set α = 0.05, then we integrate under the null

ˆ K′

0

2x dx = 0.05 =⇒ K ′ =
√

0.05. (6.11)

So we reject if x <
√

0.05. The form of this does not depend on θA, so this test
is the UMP for Ha : θ < 2. What is the power of this test? Well,

P (x <
√

0.05|θ = 1) =

ˆ 0.05

0

1 dx = 0.231, (6.12)

pretty lower power, but most powerful nevertheless. However, this test is NOT
UMP for Ha : θ > 2 because we end up with x > K ′.
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7.1 Problem Set 1

3.6.4

(a) X has a standard normal distribution:

x=seq(-6,6,.01); plot(dnorm(x)~x)

(b) X has a t-distribution with 1 degree of freedom.

lines(dt(x,1)~x,lty=2)

(c) X has a t-distribution with 3 degrees of freedom.

lines(dt(x,3)~x,lty=2)

(d) X has a t-distribution with 10 degrees of freedom.

lines(dt(x,10)~x,lty =2)

(e) X has a t-distribution with 30 degrees of freedom.

lines(dt(x,30)~x,lty =2)

(a) (b) (c)

(d) (e)
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3.6.5

(a) P (|X| ≥ 2) = 2× [1− P (X ≤ 2)] = 0.046.

> 2*(1 - pnorm (2))
[1] 0.04550026

(b) P (|X| ≥ 2) = 2× [1− P (X ≤ 2)] = 0.295.

> 2*(1 - pt(2,1))
[1] 0.2951672

(c) P (|X| ≥ 2) = 2× [1− P (X ≤ 2)] = 0.139.

> 2*(1 - pt(2,3))
[1] 0.139326

(d) P (|X| ≥ 2) = 2× [1− P (X ≤ 2)] = 0.073.

> 2*(1 - pt(2 ,10))
[1] 0.07338803

(e) P (|X| ≥ 2) = 2× [1− P (X ≤ 2)] = 0.055.

> 2*(1 - pt(2 ,30))
[1] 0.05462504
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3.6.11: Let T = W/
√
V/r, where the independent variables W ∼ N (0, 1) and

V ∼ χ2(r). Show that T 2 ∼ F (r1 = 1, r2 = r). Hint : What is the distribution
of the numerator of T 2?

Solution: Let the independent random variables U, V be given, with W ∼
N (0, 1) and U ∼ χ2(r). The random variable T 2, where T = W/

√
V/r is

given by

T 2 =

(
W√
V/r

)2

=
W 2

V/r
. (7.1)

Because W ∼ N (0, 1), we have that W 2 ∼ χ2(1) (by theorem). Now, T 2 has
the form

T 2 =
W 2

V/r
=
W 2/1

V/r
(7.2)

where 1 is the df of χ2(1) which W follows, and r is the df of χ2(r) which U
follows. Thus, T 2 ∼ F (1, r), by the definition of the F -distribution.
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3.6.15: Let X1, X2 be iid with common distribution having the pdf

f(x) =

{
e−x, 0 < x <∞
0, else

(7.3)

Show that Z = X1/X2 has an F -distribution.

Solution: It suffices to show that Z can be written as a ratio of two χ2-
distributed independent random variables. To this end, we can consider the
mgf MX(t) of X1, which is also identically that of X2 since X1, X2 are iid:

MX(t) = E[etx] =

ˆ ∞
0

etxe−x dx = (1− t)−1. (7.4)

However, this does not quite match the mgf for a χ2(2). To circumvent this
problem, we rewrite

Z =
X1

X2
=

2X1/2

2X2/2
=

(X1 +X1)/2

(X2 +X2)/2
, (7.5)

as we expect r = 2. Let Y1 = X1 + X1. Then we have trivially Y1 = 2X1, and
so |J | = 1/2. With this, Y1 has the pdf

f̃Y (y) = |J |f(x) =
1

2
f(x) =

{
1
2e
−y/2, 0 < y <∞

0, else
. (7.6)

From here, we find the mgf of Y1 to be

MY1
(t) = E[ety] =

1

2

ˆ ∞
0

etye−y/2 dy = (1− 2t)−1 = (1− 2t)−2/2, t <
1

2
.

(7.7)

By symmetry, MY2
(t) is identically MY1

(t), and both are the mgf for χ2(r = 2).
Because each mgf uniquely determines a pdf, Y1, Y2 ∼ χ2(r = 2) identically and
independently (for each depends exclusively on X1, X2, respectively). There-
fore,

Z =
(X1 +X1)/2

(X2 +X2)/2
=
Y1/2

Y2/2
(7.8)

follows the F -distribution with degrees of freedom r1 = r2 = 2, by definition.
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3.6.16: Let X1, X2, X3 be independent r.v. with Xi ∼ χ2(ri).

(a) Show that Y1 = X1/X2 and Y2 = X1 + X2 are independent and that
Y2 ∼ χ2(r1 + r2).

(b) Deduce that

X1/r1

X2/r2
and

X3/r3

(X1 +X2)/(r1 + r2)
(7.9)

are independent F -variables.

Solution:

(a) We consider the transformation

y1 = u(x1, x2) =
x1

x2
(7.10)

y2 = v(x1, x2) = x1 + x2. (7.11)

whose inverse is

x1 = ū(y1, y2) =
y1y2

1 + y1

x2 = v̄(y1, y2) =
y2

1 + y1
. (7.12)

The absolute value of the Jacobian is

|J | =
∣∣∣∣det

(
∂y1

ū ∂y2
ū

∂y1 v̄ ∂y2 v̄

)∣∣∣∣ =
y2

(1 + y1)2
, (7.13)

which maps one-to-one from the space of X1, X2 R+ ×R+ onto the space
of Y1, Y2 R+ × R+. Since X1, X2 are independent, we consider the joint
pdf of X1, X2:

h(x1, x2) =

{
x
r1/2−1
1 x

r2/2−1
2

Γ(r1/2)Γ(r2/2)2(r1+r2)/2 e
−(x1+x2)/2, 0 < x1, x2 <∞

0, else

(7.14)

from which we can deduce the joint pdf for Y1, Y2:

h̃(y1, y2) = |J |h
(
y1y2

1 + y1
,

y2

1 + y1

)

=

y2(y1y2)r1/2−1y
r2/2−1
2 (1+y1)−r1/2−r2/2+�2

����(1+y1)2 Γ(r1/2)Γ(r2/2)2(r1+r2)/2 e−y2/2, 0 < y1, y2 <∞
0, else

=

{
y
r1/2+r2/2−1
2 y

r1/2−1
1 (1+y1)−r1/2−r2/2

Γ(r1/2)Γ(r2/2)2(r1+r2)/2 e−y2/2, 0 < y1, y2 <∞
0, else

(7.15)
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Without further computation we see that h̃(y1, y2) can be written as a
product of two nonnegative functions of y1 and y2. In view of Theorem
2.4.1, Y1 and Y2 are independent.

Next, we wish to show Y2 ∼ χ2(X1, X2), to which end we find the marginal
pdf g2(y2) of Y2:

g2(y2) =

ˆ ∞
0

h̃(y1, y2) dy1

= C

ˆ ∞
0

y
r1/2−1
1 (1 + y1)−r1/2−r2/2 dy1

= C
Γ(r1/2)Γ(r2/2)

Γ[(r1 + r2)/2]
(7.16)

where C contains all the y1-independent elements. From here, via simple
back-substitution we obtain the marginal pdf for Y2:

g2(y2) =

{
y

(r1+r2)/2−1
2

Γ[(r1+r2)/2]2(r1+r2)/2 e
−y2/2, 0 < y2 <∞

0, else
, (7.17)

i.e., Y2 ∼ χ2(r1 + r2).

Mathematica code:

In [20]:= Integrate[
x^(r1/2 - 1) (1 + x)^(-r1/2 - r2/2), {x, 0, Infinity }]

Out [20]= ConditionalExpression [(Gamma[r1/2] Gamma[r2/2])/
Gamma[(r1 + r2)/2], Re[r2] > 0 && Re[r1] > 0]

(b) By definition, becauseX1, X2 are independent random variables withXi ∼
χ2(ri),

Ω =
X1/r1

X2/r2
∼ F (r1, r2). (7.18)

Also, because X3 ∼ χ2(r3) and (X1 + X2) ∼ χ2(r1 + r2) (from (a)), we
have

Λ =
X3/r3

(X1 +X2)/(r1 + r2)
∼ F (r3, r1 + r2) (7.19)

as well. Furthermore, because

Ω =
X1/r1

X2/r2
=
r2

r1
Y1 (7.20)

Λ =
r1 + r2

r3

X3

Y2
(7.21)

and because X1, X2, X3 are independent, we have that Y1, Y2, X3 are
independent. Therefore, it is necessary that Ω ∼ F (r1, r2) and Λ ∼
F (r3, r1 + r2) are independent as well.
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4.1.1 Twenty motors were put on test under a high-temperature setting.
The lifetimes in hours of the motors under these conditions are given below.
Also, the data are in the file lifetimemotor.rda at the site listed in the Pref-
ace. Suppose we assume that the lifetime of a motor under these conditions, X,
has a Γ(1, θ) distribution.

1 4 5 21 22 28 40 42 51 53
58 67 95 124 124 160 202 260 303 363

(a) Obtain a histogram of the data and overlay it with a density estimate,
using the code hist(x,pr=T); lines(density(x)) where the R vectorx
contains the data. Based on this plot, do you think that the Γ(1, θ) model
is credible?

(b) Assuming a Γ(1, θ) model, obtain the maximum likelihood estimate θ̂ of θ

and locate it on your histogram. Next overlay the pdf of a Γ(1, θ̂) distribu-

tion on the histogram. Use the R function dgamma(x,shape=1,scale=θ̂)
to evaluate the pdf.

(c) Obtain the sample median of the data, which is an estimate of the median
lifetime of a motor. What parameter is it estimating (i.e., determine the
median of X)?

(d) Based on the mle, what is another estimate of the median of X?

Solution:

(a) For some reason R does not recognize the dataset as of numeric type.
Because the dataset is small enough, I recoded and fed it by hand to the
data vector y:

> lines(density(y))
> y <- c(1,4,5,21,22,28,40,42,51,53,58,67,
95 ,124 ,124 ,160 ,202 ,260 ,303 ,363)
> hist(y,pr=T)
> lines(density(y))

The Γ(1, θ), or Exp(θ), model seems to be credible as far as the histogram
is concerned. However, the overlaying density does not look like a Γ(1, θ).

(b) Assuming the Γ(1, θ) model, then the pdf on the support R+ is given by

f(y) =
1

θ
e−y/θ, (7.22)

from which we obtain the logarithm of the likelihood function:

l(θ) = log

(
n∏
i=1

1

θ
e−yi/θ

)
= −n log θ − 1

θ

n∑
i=1

yi. (7.23)
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The first partial derivative wrt θ is then

∂θl(θ) = −n
θ

+
1

θ2

n∑
i=1

yi. (7.24)

Setting ∂θl(θ) = 0, we get (by inspection) that l(θ) is extremized iff θ =
(1/n)

∑n
i=1 yi = ȳ. We also have that ∂θθ < 0 ∀θ ∈ R+, which means l(θ)

is maximized globally at ȳ. From here, the statistic

θ̂ = Ȳ = 101.15 (7.25)

is the mle of θ. (Also note that because E[Y ] = θ =⇒ E[Ȳ ] = θ, θ̂ is an
unbiased estimator of θ.)

> mean(y)
[1] 101.15
> abline(v = mean(y), lwd=3, lty=2)
> z=dgamma(y, shape=1, scale=mean(y))
> lines(z~y,lty=2)

(c) The sample median of the data is 55.5

> median(y)
[1] 55.5

The median of Y ∼ Γ(1, θ) ≡ Exp(θ) is the value of y′ at which

0.5 =

ˆ y′

0

1

θ
e−y/θ dy = 1− e−y

′/θ =⇒ y′ = θ ln 2, (7.26)

which means that the median of Y ∼ Γ(1, θ) ≡ Exp(1, θ) is the half-life,
θ ln 2. Since the sample median is just θ multiplied by ln 2, the sample
median also estimates the parameter θ.
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(d) From part (a), we know that θ̂ = Ȳ , the sample mean, is the mle of θ, the
population mean. From part (c), we have shown that the median of Y ∼
Γ(1, θ) is simply θ ln 2. By simple inspection we see that θ̂ ln 2 = Ŷ ln 2 is
the (unbiased) mle of θ ln 2, the median of Y .
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4.1.3 Suppose the number of customers X that enter a store between the hours
9:00 a.m. and 10:00 a.m. follows a Poisson distribution with parameter θ. Sup-
pose a random sample of the number of customers that enter the store between
9:00 a.m. and 10:00 a.m. for 10 days results in the values

9 7 9 15 10 13 11 7 2 12

1. Determine the maximum likelihood estimate of θ. Show that it is an
unbiased estimator.

2. Based on these data, obtain the realization of your estimator in part (a).
Explain the meaning of this estimate in terms of the number of customers.

Solution:

1. Let X ∼ Poi(θ) be given, then the pmf of X is given by

p(x) =

{
θxe−θ

x! , x ∈ N
0, else

. (7.27)

Assuming the Xi’s ∼ Poi(θ) are iid, where i = 1, . . . , n, then the logarithm
of the likelihood function is

l(θ) = log

(
n∏
i=1

θxie−θ

xi!

)

= log

(
e−nθθ

∑n
i=1 xi

n∏
i=1

1

xi!

)

= −nθ +

(
n∑
i=1

xi

)
log θ −

n∑
i=1

log xi!. (7.28)

Setting ∂θl(θ) = 0, we solve for θ:

∂θl(θ) = −n+
1

θ

n∑
i=1

xi = 0 ⇐⇒ θ =
1

n

n∑
i=1

xi = x̄ (7.29)

By inspection, ∂θθl(θ) < 0∀θ ∈ R+, and so the statistic

θ̂ = Ȳ (7.30)

is the mle of θ. Further, it is an unbiased estimator of θ simply because

E[Y ] = θ =⇒ E[Ȳ ] = θ. (7.31)

2. Part (a) says the sample means is the mle of θ. The means of the given
sample is 9.5.
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> mean(c(9 ,7, 9, 15, 10, 13, 11, 7, 2, 12))
[1] 9.5

This says that on average, 9.5, or about 9-10 customers enter the store
between the hours 9:00 a.m. and 10:00 a.m..
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4.1.8 Recall that for the parameter η = g(θ), the mle of η is g(θ̂), where θ̂ is the
mle of θ. Assuming that the data in Example 4.1.6 were drawn from a Poisson
distribution with mean λ, obtain the mle of λ and then use it to obtain the mle
of the pmf. Compare the mle of the pmf to the nonparametric estimate. Note:
For the domain value 6, obtain the mle of P (X ≥ 6).

Solution: Based on the previous problem, the mle of λ is the sample means,
which has the value 2.13.

> mean(c(2,1,1,1,1,5,1,1,3,0,2,1,1,3,4,2,1,2,2,6,5,2,3,2,4,1,3,1,3,0))
[1] 2.133333

Because the sample means x̄ is the mle of λ, and the pmf is given by

p(x) =

{
λxe−λ

x! , x ∈ N
0, else

, (7.32)

the mle of the pmf is given by

p̃(x) =

{
x̄xe−x̄

x! , x ∈ N
0, else

. (7.33)

Next, we compare the mle of the pmf to the nonparametric estimate:

j 0 1 2 3 4 5 ≥ 6
p̂(j) 0.067 0.367 0.233 0.167 0.067 0.067 0.033
p̃(j) 0.118 0.253 0.270 0.192 0.102 0.044 0.022

Mathematica code for P (j ≥ 6) for p̃(j):

P[x_] := (2.1333333)^x*E^( -2.1333333)/x!

N[Sum[P[y], {y, 6, Infinity }]]

0.0218705
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7.2 Problem Set 2

4.2.2. Consider the data on the lifetimes of motors given in Exercise 4.1.1.
Obtain a large sample 95% confidence interval for the mean lifetime of a motor.

Solution: Large sample 95% CI’s have the form

(x̄− zα/2
S√
n
, x̄+ zα/2

S√
n

) (7.34)

Here, x̄ = 101.15, n = 20, s = 105.4091, zα/2 = 1.96. So, the desired CI is

(101.15− 1.96
105.4091√

20
, 101.15 + 1.96

105.4091√
20

) = (54.95, 147.35) (7.35)
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4.2.6. X is the sample mean of a sample of size n from N (µ, 9). Find n such
that

P (X̄ − 1 ≤ µ ≤ X̄ + 1) = 0.90 (7.36)

Solution: σ2 = 9 =⇒ σ = 3. We have

0.90 = P (X̄ − 1 ≤ µ ≤ X̄ + 1)

= P
(
µ− 1 ≤ X̄ ≤ µ+ 1

)
= P

(
−1 ≤ X̄ − µ ≤ 1

)
= P

(
−1

3/
√
n
≤ X̄ − µ

3/
√
n
≤ 1

3/
√
n

)
. (7.37)

In other words,

z0.05 =
1

3/
√
n

=

√
n

3
= 1.644854 =⇒ n = 24.35 ≈ 25 . (7.38)
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4.2.18. Xi’s ∼ N (µ, σ2), with µ, σ2 unknown. A confidence interval for σ2

can be found as follows. We know that (n − 1)S2/σ2 is a random variable
with a χ2(n1) distribution. Thus we can find constants a and b so that P ((n−
1)S2/σ2 < b) = 0.975 and P (a < (n − 1)S2/σ2 < b) = 0.95. In R, b =
qchisq(0.975, n− 1), while a = qchisq(0.025, n− 1).

(a) Show that this second probability statement can be written as

P ((n− 1)S2/b < σ2 < (n− 1)S2/a) = 0.95. (7.39)

(b) If n = 9 and S2 = 7.93, find a 95% confidence interval for σ2.

(c) If µ is known, how would you modify the preceding procedure for finding
a confidence interval for σ2?

Solution:

(a) We simply re-arrange things in the probability statement:

0.95 = P (a < (n− 1)S2/σ2 < b)

= P (σ2 < (n− 1)S2/a ∧ σ2 > (n− 1)S2/b)

= P ((n− 1)S2/b < σ2 < (n− 1)S2/a). (7.40)

(b) When n = 9, s2 = 7.93, we have a = 2.179731 and b = 17.53455. Then
the 95% CI for σ2 is(

(n− 1)S2

b
,

(n− 1)S2

a

)
=

(
8× 7.93

17.53455
,

8× 7.93

2.179731

)
= (3.618, 29.10451)

(7.41)

(c) If µ is known, the unbiased estimator for the population standard deviation
becomes proportional to 1/

√
n, not 1/

√
n− 1. Because of this, we modify

some numerics in our procedure from n− 1 to n. From here, we make the
following changes

(n− 1)S2/σ2 ∼ χ2(n− 1)→ nS2/σ2 ∼ χ2(n)

P (nS2/σ2 < b) = 0.975

P (a < nS2/σ2 < b) = 0.95. (7.42)

The new CI will look like (nS2/b < σ2 < nS2/a).
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4.2.21. Let two independent random samples, each of size 10, from two normal
distributions N (µ1, σ

2) and N (µ2, σ
2) yield x̄ = 4.8, s2

1 = 8.64, ȳ = 5.6, s2
2 =

7.88. Find a 95% confidence interval for µ1 − µ2.

Solution: The 95% CI for difference in means i this case looks like(
(x̄− ȳ)− tα/2,n1+n2−2sp

√
1

n1
+

1

n2
, (x̄− ȳ) + tα/2,n1+n2−2sp

√
1

n1
+

1

n2

)
.

(7.43)

The pooled variance is

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

9× 8.65 + 9× 7.88

18
= 8.26. (7.44)

Plugging in numbers we find the CI, with t0.025,18 = 2.100922:(
(4.8− 5.6)− 2.100922

√
8.26

√
1

10
+

1

10
, (4.8− 5.6) + 2.100922

√
8.26

√
1

10
+

1

10

)
= (−3.500, 1.900)

(7.45)
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4.2.22. Let two independent random variables, Y1 and Y2, with binomial dis-
tributions that have parameters n1 = n2 = 100, p1, and p2, respectively, be
observed to be equal to y1 = 50 and y2 = 40. Determine an approximate 90%
confidence interval for p1 − p2.

Solution: The 90% CI for the difference in proportions looks like(p̂1 − p̂2)− zα/2

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
,

(p̂1 − p̂2) + zα/2

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2

 (7.46)

where α0.05 = 1.644854. Plugging in numbers, we find(
0.5− 0.4− 1.644854

√
(0.5)(0.5)

100
+

(0.4)(0.6)

100
,

0.5− 0.4 + 1.644854

√
(0.5)(0.5)

100
+

(0.4)(0.6)

100

)
= (−0.01513978, 0.2151398) (7.47)
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4.2.27. LetX1, X2, . . . , Xn and Y1, Y2, . . . , Ym be two independent random sam-
ples from the respective normal distributions N (µ1, σ

2
1) and N (µ2, σ

2
2), where

the four parameters are unknown. To construct a confidence interval for the
ratio, σ2

1/σ
2
2 , of the variances, form the quotient of the two independent 2 vari-

ables, each divided by its degrees of freedom, namely,

F =

(m−1)S2
2

σ2
2

/(m− 1)

(n−1)S2
1

σ2
1

/(n− 1)
=
S2

2/σ
2
2

S2
1/σ

2
1

(7.48)

where S2
1 , S

2
2 are respectively sample variances.

(a) What kind of distribution does F have?

(b) Rewrite the second probability statement as

P

[
a
S2

1

S2
2

<
σ2

1

σ2
2

< b
S2

1

S2
2

]
= 0.95. (7.49)

The observed values, s2
1 and s2

2, can be inserted in these inequalities to
provide a 95% confidence interval for σ2

1/
2
2.

Solution:

(a) F ∼ F (m− 1, n− 1), by definition.

(b) We just rearrange the quantities in the probability statement:

0.95 = P (a < F < b)

= P

(
a <

S2
2/σ

2
2

S2
1/σ

2
1

< b

)
= P

(
σ2

1

σ2
2

< b
S2

1

S2
2

∧ σ
2
1

σ2
2

> a
S2

1

S2
2

)
= P

(
a
S2

1

S2
2

<
σ2

1

σ2
2

< b
S2

1

S2
2

)
. (7.50)
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4.5.1. Show that the approximate power function given in expression (4.5.12)
of Example 4.5.3 is a strictly increasing function of µ. Show then that the test
discussed in this example has approximate size α for testing

H0 : µ ≤ µ0 versus H1 : µ > µ0. (7.51)

Solution: The approximate power function is given by

γ(µ) ≈ Φ

(
−zα −

√
n(µ0 − µ)

σ

)
(7.52)

∂µγ(µ) is necessarily positive ∀µ ∈ R for γ(µ) to be strictly increasing. So we
check:

∂µγ(µ) = ∂µ

[
Φ

(
−zα −

√
n(µ0 − µ)

σ

)]
= Φ′

(
−zα −

√
n(µ0 − µ)

σ

) √
n

σ
. (7.53)

We note that
√
n/σ > 0 and Φ′(. . . ) > 0 necessarily because Φ is a cdf (for the

N (µ, σ2)). With this, we have shown that γ(µ) is strictly increasing in µ.

Under the hypotheses and the fact that γ(µ) is strictly increasing in µ, α =
maxµ≤µ0 is maximized whenever µ ≤ µ0 is maximized, i.e. µ = µ0:

max
µ≤µ0

γ(µ) = γ(µ0) = Φ(−zα) = α. (7.54)

So the test has approximate size α.
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4.5.2. For the Darwin data tabled in Example 4.5.5, verify that the Student
t-test statistic is 2.15.

Solution: α = 0.05. The sample mean and standard deviation for the differences
are

x̄ = 2.62 (7.55)

sx = 4.71826. (7.56)

The t-statistic is then

tdf=14 =
x̄− 0

sx
=

2.62

4.71826/
√

15
≈ 2.150627 (7.57)

R code:

> mean(darwin$cross)-mean(darwin$self)
[1] 2.62

> sd(darwin$cross - darwin$self)
[1] 4.71826
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4.5.5. Let X1, X2 be a random sample of size n = 2 from the distribution having
pdf f(x; θ) = (1/θ)e−x/θ, θ < x <∞, zero elsewhere. We reject H0 : θ = 2 and
accept H1 : θ = 1 if the observed values of X1, X2, say x1, x2, are such that

f(x1; 2)f(x2; 2)

f(x1; 1)f(x2; 1)
≤ 1

2
(7.58)

Here Ω = {θ : θ = 1, 2}. Find the significance level of the test and the power of
the test when H0 is false.

Solution: We reject H0 whenever

1

2
≥ f(x1; 2)f(x2; 2)

f(x1; 1)f(x2; 1)

=
(1/2)e−x1/2(1/2)e−x2/2

e−x1e−x2

=
1

4
ex1/2ex2/2

=
1

4
e(x1+x2)/2 =⇒ x1 + x2 ≤ 2 ln(2). (7.59)

The significance level of the test α is the probability of rejecting H0 when it is
true, i.e.

α = P (x1 + x2 ≤ 2 ln(2)|θ = 2). (7.60)

Recall that the non-zero part of the pdf for Γ(k, θ) is given by

f(x) =
1

Γ(k)θk
xk−1e−x/θ, x ∈ R+

=
1

θ1
e−x/θ, k = 1, (7.61)

we have that X1, X2 ∼ Γ(k = 1, θ = 2), iid, implies X1 +X2 ∼ Γ(k = 2, θ = 2).
From here, it is “easy” to calculate α:

α = P (x1 + x2 ≤ 2 ln(2)|θ = 2) =

ˆ 2 ln(2)

0

1

Γ(2)θ2
ξe−ξ/θ dξ

=

ˆ 2 ln(2)

0

1

4
ξe−ξ/2 dξ

=
1

2
(1− ln(2)) ≈ 0.1534 (7.62)

The power of the test is the probability of rejecting H0 when H0 is false. In
this case, we make a similar calculation, only setting θ = 1 (since H0 false):

P (x1 + x2 ≤ 2 ln(2)|θ = 1) =

ˆ 2 ln(2)

0

ξe−ξ dξ

=
3

4
− ln(2)

2
≈ 0.403426 (7.63)
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4.5.12. Let X1, X2, . . . , X8 be a random sample of size n = 8 from a Poisson
distribution with mean µ. Reject the simple null hypothesis H0 : µ = 0.5 and
accept H1 : µ > 0.5 if the observed

∑8
i=1 xi ≥ 8.

(a) Show that the significance level is 1-ppois(7,8*.5).

(b) Use R to determine γ(0.75), γ(1), and γ(1.25).

(c) Modify the code in Exercise 4.5.9 to obtain a plot of the power function.

Solution:

(a) The significance level α is the probability of rejecting H0 when H0 is true.
Under the null, µ = 0.5, and the r.v.

X1 + · · ·+X8 ∼ Poi(8µ) ≡ Poi(8× 0.5). (7.64)

α is given by

α = γ(µ) = P

(
8∑
i=1

xi ≥ 8|µ = 0.5

)

= 1− P

(
8∑
i=1

xi < 7

)
= 1− ppois(7,8*.5)

= 0.05113362 (7.65)

(b)

γ(0.75) = 0.2560202

γ(1) = 0.5470392

γ(1.25) = 0.7797794 (7.66)

R code:

> 1 - ppois (7 ,8*0.5)
[1] 0.05113362

> 1 - ppois (7 ,8*0.75)
[1] 0.2560202

> 1 - ppois (7 ,8*1)
[1] 0.5470392

> 1 - ppois (7 ,8*1.25)
[1] 0.7797794

(c) R code:

> theta=seq (.75 ,1.25 ,.25); gam=1-ppois(7,theta *8)
> plot(gam~theta ,pch=" ",xlab=expression(theta),ylab=expression(gamma ))
> lines(gam~theta)
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We’re interested in the range of θ ∈ [0.75, 1.25]. I’m making the step size
small to make the power function look smooth.

Plot of γ(µ):
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4.6.4. (Note that it is fine to make a heuristic argument here. Just make sure
that it is clear with supporting graphs/figures (hand drawn is fine).) Consider
the one-sided t-test for H0 : µ = µ0 versus HA1 : µ > µ0 constructed in Exam-
ple 4.5.4 and the two-sided t-test for t-test for H0 : µ = µ0 versus H1 : µ = µ0

given in (4.6.9). Assume that both tests are of size α. Show that for µ > µ0,
the power function of the one-sided test is larger than the power function of the
two-sided test.

Solution: We want to show that for µ > µ0, the power function of the one-sided
test is larger than the power function of the two-sided test. To this end, let
γ1(µ) denote the power function of the one-sided test, and γ2(µ) the two-sided
test. This gives

γ2(µ) = P
(
|test-statistic| ≥ tα/2,n−1

)
= P

(
test-statistic ≥ tα/2,n−1

)
(7.67)

(test statistic positive because µ > µ0), while

γ1(µ) = P (test-statistic ≥ tα,n−1) . (7.68)

Since tα/2,n−1 > tα,n−1 , we have that

γ2(µ) = P (|·| ≥ tα/2) ≤ P (· ≥ tα) = γ1(µ). (7.69)

And so, for a given µ > µ0, the power function of the one-sided test is larger
than the power function of the two-sided test.
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4.6.7. Among the data collected for the World Health Organization air quality
monitoring project is a measure of suspended particles in µg/m3. Let X and
Y equal the concentration of suspended particles in µg/m3 in the city center
(commercial district) for Melbourne and Houston, respectively. Using n = 13
observations of X and m = 16 observations of Y , we test H0 : µX = µY against
H1 : µX < µY .

(a) Define the test statistic and critical region, assuming that the unknown
variances are equal. Let α = 0.05.

(b) If x̄ = 72.9, sx = 25.6, ȳ = 81.7, and sy = 28.3, calculate the value of the
test statistic and state your conclusion.

Solution:

(a) Assuming the unknown variances are equal, we have

τ =
(ȳ − x̄)

sp

√
1
13 + 1

16

(7.70)

The critical region is given by

C := {(X1, . . . , X13, Y1, . . . , Y16)|τ ≥ t0.05,13+16−2 = 1.703288 }. (7.71)

(b) With the given numbers, we calculate the pooled variance is

S2
p =

(13− 1)(25.6)2 + (16− 1)(28.3)2

13 + 16− 2
= 736.21 (7.72)

With this,

τ =
(81.7− 72.9)− 0
√

736.21
√

1
13 + 1

16

= 0.8685893 (7.73)

Since 0.8685893 < 1.703288, there is not enough evidence to reject H0 in
favor of Ha.
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4.6.8. Let p equal the proportion of drivers who use a seat belt in a country
that does not have a mandatory seat belt law. It was claimed that p = 0.14. An
advertising campaign was conducted to increase this proportion. Two months
after the campaign, y = 104 out of a random sample of n = 590 drivers were
wearing their seat belts. Was the campaign successful?

1. Define the null and alternative hypotheses.

2. Define a critical region with an α = 0.01 significance level.

3. Determine the approximate p-value and state your conclusion.

Solution:

(a) H0 : p = 0.14 Ha : p > 0.14.

(b) The critical region is given by

C :=

y
∣∣∣∣ y/n− 0.14√

0.14(1−0.14)
590

≥ zα=0.01 = 2.326348

 . (7.74)

(c) The value of the test statistic is

z∗ =
104/590− 0.14√

0.14(1−0.14)
590

= 2.539069 > 2.326348 (7.75)

Since z∗ > z, there is enough evidence to reject H0 in favor of Ha (p-

value: 0.006 < 0.01 = α ), i.e., there is enough evidence to suggest that
the campaign was successful.

R code:

> 1-pnorm (2.539069)
[1] 0.005557395
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7.3 Problem set 3

4.7.4

Solution: The test statistic under the null hypothesis H0 : ∂i = 1/6∀i is

χ =

6∑
i=1

(Freqi − 20)2

20
=

(b− 20)2

20
+ 4 · 0 +

(40− b− 20)2

20
=

(b− 20)2

10
.

(7.76)

Under the null hypothesis, χ ∼ χ2(df = 5). At α = 0.025, we reject the null
hypothesis whenever χ ≥ qchisq(1-0.025,5) = 12.8325, i.e.,

(b− 20)2

10
≥ 12.8325 =⇒ b ≤ 8 ∨ b ≥ 32 (7.77)
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4.7.5

Solution: The test statistic under H0 : pa = 9/16, pb = 3/16, pc = 3/16, pd =
1/16, the test statistic is

χ =
(86− 90)2

90
+

(35− 30)2

30
+

(26− 30)2

30
+

(13− 10)2

10
=

22

9
. (7.78)

UnderH0, χ ∼ χ2(df = 4−1 = 3). The p-value for this χ is 1-pchisq(22/9, 3) = 0.4854149 >
0.01. So, we don’t have enough evidence to reject H0, i.e. the data is consistent
with the Mendelian theory.
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4.7.6

Solution: Using the code provided by the problem we get

> r1=c(15 ,25 ,32 ,17 ,11);r2=c(9 ,18 ,29 ,28 ,16); mat=rbind(r1 ,r2)
> chisq.test(mat)

Pearson ’s Chi -squared test

data: mat
X-squared = 6.4019 , df = 4, p-value = 0.1711

Since p = 0.1711 > 0.05, we don’t have enough evidence to reject H0, i.e. the
two teaching procedures are (statistically) equally effective.
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4.8.9 (use acceptance sampling)

Solution: R code:

# acceptance sampling
# approximate the Cauchy distribution

x <- runif (100000 , -7 ,7)
y <- runif (100000 ,0 ,1)

z <- cbind(x,y)
accept <- NULL
reject <- NULL

dens <- function(x){
d <- 1/((pi ^2)*(x^2+1))
return(d)}

for (i in 1: length(x)){
d <- dens(x[i])
if (y[i] < d) {

accept <- rbind(accept ,z[i,])}
else{

reject <- rbind(reject ,z[i,])}
}
# plot accepted values in red
plot(accept[,1],accept[,2],
main = "Approximated Distribution", ylim=c(0,1), col="red")

# plot rejected values in blue
points(reject[,1], reject[,2], col = "dark blue")

Here’s a small sample:

> accept
x y
[1,] -0.2257702402 8.676955e-02
[2,] -0.3536258731 6.871887e-02
[3,] 4.1498403600 4.068073e-03
[4,] -0.3986396971 3.033239e-02
[5,] 0.7077048477 1.492551e-02
[6,] -0.0422784868 1.612575e-02
[7,] -0.6391186416 1.029603e-02
[8,] 0.4845524384 6.119987e-02
[9,] 0.3572320105 2.479371e-02
.
.
.
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4.8.10 (use inverse transformation sampling)

Solution: We first want to find the cdf F , given f(x). Well,

F (x) =

ˆ x

−∞
f(x′) dx′ =

ˆ x

0

1

θ3
3x′2e−x

′3/θ3

dx′ = · · · = 1− e−x
3/θ3

. (7.79)

With this, let u ∼ U(0, 1) then

F−1(u) = 3
√
−θ3 ln(1− u) ∼Wei(k = 3, θ), 0 ≤ u ≤ 1. (7.80)

Suppose θ = 2 then in R, we do the following:

# inverse transformation sampling
# generate vector of random uniform (0,1)
u <- runif (100000)

# set beta and transform to random weibull(shape=3, scale=theta)
beta = 2
x <- (-(beta ^3)* log(1 - u))^(1/3)
hist(x, main="Histogram of Tranformed Variable", pr = TRUE)

# overlay weibull
curve(dweibull(x, shape = 3, scale=2),
col="darkgreen", lwd=3, add=TRUE)

Here’s a sample:

> x <- (-(beta ^3)* log(1 - u))^(1/3)
> x
1.57511912 1.81610458 2.51359811 1.12564398 1.21991006
1.10365173 0.71966428 2.06591082 3.08423326 1.67620145
1.02533405 1.24429387 0.94192313 2.19097666 1.98069305
0.43007645 1.18581709 1.11303036 1.63002049 2.37205273
2.45962833 1.67162606 1.61624974 1.46149955 1.92907758
1.12735030 1.02997348 2.25870529 1.58137215 2.71199084
1.05306668 1.43121600 1.17977939 1.24985669 2.22292333
1.86914252 3.01206737 1.11948037 1.64757666 1.35904188
1.39351092 2.60002179 1.12125772 2.15576011 2.41963279
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7.4 Problem set 4

4.9.4 (for part B, write your own R function to generate the bootstrap distri-
bution of the median - using the code posted on Moodle is an okay starting
point)

Solution:

(a) The median x1/2 for a Γ(1, β) is such that

1

2
=

ˆ x1/2

0

1

β
e−x/β = 1− e−x1/2/β =⇒ x1/2 = β ln(2) (7.81)

(b) Here’s the R code (I’m not using Prof. O’Brien’s code here)

> x <- c(131.7 , 182.7, 73.3, 10.7, 150.4 , 42.3, 22.2, 17.9, 264.0,
154.4, 4.3, 265.6, 61.9, 10.8, 48.8, 22.5, 8.8, 150.6, 103.0 , 85.9)
> percentciboot <- function(x,b,alpha){
+ theta=median(x); thetastar=rep(0,b); n=length(x)
+ for(i in 1:b){xstar=sample(x,n,replace=T)
+ thetastar[i]= median(xstar)}
+ thetastar=sort(thetastar ); pick=round((alpha /2)*(b+1))
+ lower=thetastar[pick]; upper=thetastar[b-pick +1]
+ list(theta=theta ,lower=lower ,upper=upper)}
> percentciboot(x ,3000 ,.10)

$theta
[1] 67.6

$lower
[1] 30.1

$upper
[1] 131.7

> median(x)
[1] 67.6

> 100* log(2)
[1] 69.31472

The 90% bootstrap percentile CI for the median is given by (30.1, 131.7).
The true median is given by βln(2) = 100 ln(2) ≈ 69.31472. So, yes, the
90% CI traps the true median in this case.
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4.9.11

Solution:

(a) E(z∗):

E(z∗) =

n∑
i=1

xi − x̄+ µ0

n
= x̄− x̄+ µ0 = µ0 (7.82)

(b) V (z∗):

V (z∗) =

n∑
i=1

(zi − E(z∗))2 =

n∑
i=1

(xi − x̄+ µ0 − µ0)2 =

n∑
i=1

(xi − x̄)2

(7.83)
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4.9.13

Solution: Here’s the R code:

> X <- c(119.7 , 104.1 , 92.8, 85.4, 108.6 , 93.4, 67.1, 88.4, 101.0, 97.2,
+ 95.4, 77.2, 100.0, 114.2, 150.3 , 102.3 , 105.8, 107.5, 0.9, 94.1)
> boottestonemed <-
+ function(x,theta0 ,b){
+ #
+ # x = sample
+ # theta0 is the null value of the mean
+ # b is the number of bootstrap resamples
+ #
+ # origtest contains the value of the test statistics
+ # for the original sample
+ # pvalue is the bootstrap p-value
+ # teststatall contains the b bootstrap tests
+ #
+ n<-length(x)
+ v<-median(x)
+ z<-x-median(x)+ theta0
+ counter <-0
+ teststatall <-rep(0,b)
+ for(i in 1:b){xstar <-sample(z,n,replace=T)
+ vstar <-median(xstar)
+ if(vstar >= v){counter <-counter +1}
+ teststatall[i]<-vstar}
+ pvalue <-counter/b
+ list(origtest=v,pvalue=pvalue ,teststatall=teststatall)
+ #list(origtest=v,pvaule=pvalue)
+ }
> boottestonemed(X,90 ,3000)
$origtest
[1] 98.6

$pvalue
[1] 0.006

At such a low p-value (p = 0.006), we reject the null hypothesis H0. So even
though we don’t reject H0 with the test based on sampling mean, we do reject
H0 with the test based on medians.
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5.1.7

Solution: By definition,

Yn
P−→ θ ⇐⇒ ∀ε > 0, lim

n→∞
P [|Yn − θ| ≥ ε] = 0

⇐⇒ ∀ε > 0, lim
n→∞

P [|min{X1, . . . , Xn} − θ| ≥ ε] = 0

⇐⇒ ∀ε > 0, lim
n→∞

P [min{X1, . . . , Xn} − θ ≥ ε] = 0

⇐⇒ ∀ε > 0, lim
n→∞

P [Yn ≥ ε+ θ] = 0 (7.84)

where the second to last equivalence statement comes from the fact that xi >

θ ∀i = 1, 2, . . . , n. To show Yn
P−→ θ, we find the cdf for Yn:

FYn(y) = P (Yn < y)

= 1− P (Yn ≥ ym)

= 1−
n∏
i=1

P (Xi ≥ y)

= 1−
n∏
i=1

ˆ ∞
y

e−(x−θ) dx

= 1−
n∏
i=1

e−(y−θ)

= 1− e−n(y−θ)

P (Yn ≥ y) = e−n(y−θ). (7.85)

Let ε > 0 be given. Then

P (Yn ≥ ε+ θ) = e−n(ε+θ−θ) = e−nε, (7.86)

and so

lim
n→∞

P [|Yn − θ| ≥ ε] = lim
n→∞

P [Yn ≥ ε+ θ] = lim
n→∞

e−nε = 0 =⇒ Yn
P−→ θ.

(7.87)
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5.2.2 (Investigate = find)

Solution: Let FZn and FZ be, respectively, the cdfs of Zn and Z. Then by
definition

Zn
D−→ Z ⇐⇒ lim

n→∞
FZn(z) = FZ(z) (7.88)

for all z at which FZ(z) is continuous. Now, we don’t know what FZ is in this
case, but we can find what FZn converges to when n → ∞. To show this, we
find FZn :

FZn(z) = P (Zn ≤ z)
= P (n(Y1 − θ) ≤ z)
= P (Y1 ≤ z/n+ θ)

= 1− e−n(z/n+θ−θ), calculated in Problem 5.1.7

= 1− e−z. (7.89)

And so (obviously)

lim
n→∞

FZn(z) = 1− e−z ≡ cdf(Exp(1)) (7.90)

Therefore, Zn
D−→ Z ∼ Exp(1).
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5.2.7

Solution: Let Xn ∼ Γ(α = n, β) be given, where β is not a function of n. Let
Yn = Xn/n. To find the limiting distribution of Yn, we find limn→∞MYn(t).
The reason we don’t want to find the cdf FYn is that integrals involving the
Gamma distribution are often ugly.

MYn(t) = E[etYn ] = E[etXn/n] ≡ E[etnXn ]

= (1− βtn)−n

=

(
1− βt

n

)−n
. (7.91)

And so using the identity

lim
n→∞

(
1− 1

n

)−n
= e, (7.92)

by change of variables we obtain

lim
n→∞

MYn(t) = lim
n→∞

(
1− βt

n

)−n
= eβt (7.93)

So what is the limiting distribution of Yn? By definition,

MY (t) = E[etY ] =

ˆ ∞
∞

fY (y)eyt dy = eβt. (7.94)

Upon inspection, this equality holds if and only if fY (y) ≡ δ(y − β), the delta
function centered at β.

ˆ ∞
−∞

δ(y − β)eyt dy = eβt. (7.95)

And so, the limiting distribution of Yn is the degenerate distribution with pa-
rameter β:

Yn
D−→ Y ∼ δ(y − β) ≡

{
1, y = β

0, else
. (7.96)
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5.3.9

Solution: We have X1, . . . , X72, with

Xi ∼ f(x) =

{
1
x2 , 1 < x <∞
0, else

. (7.97)

We first find the probability that any given observation is less than 3:

P (X < 3) =

ˆ 3

1

1

x2
dx =

2

3
. (7.98)

So we have a “binomial situation” where the probability of success is p = 2/3.
Given n = 72 trials, we have µ = np = 72(2/3) = 48 and σ =

√
np(1− p) = 4.

We wish to find the probability of having more than 50 successes. To this end,
we use the normal approximation (CLT), which says

Y72 − µ
σ

∼ N (0, 1). (7.99)

And so

P (Y72 > 50) ≈ P
(
Z ≥ 51− 48

4

)
= 1-pnorm(3/4)

= 0.2266274 (7.100)

Or we can also use the continuity correction to get

P (Y72 > 50) ≈ P
(
Z ≥ 50.5− 48

4

)
= 1-pnorm((50.5-48)/4)

= 0.2659855 (7.101)
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5.3.11

Solution: We want to use the ∆-method for this problem. Since X̄ ∼ N (µ, σ2/n),
we have

√
n(X̄ − µ)

D−→ N (0, σ2), (7.102)

by a simple change of variables. The function u(X̄) = X̄3 is differential at for
all X̄ and u′(X̄) 6= 0 in general, so by the ∆-method,

√
n(u(X̄)− u(µ))

D−→ N (0, σ2(u′(µ))2)

⇐⇒
√
n(u(X̄)− u(µ))

D−→ N (0, σ2(3µ2)2)

⇐⇒
√
n(u(X̄)− µ3)

D−→ N (0, 9σ2µ4). (7.103)

But of course, the convergence in distribution above is equivalent to

u(X̄) = X̄3 D−→ N
(
µ3,

9σ2µ4

n

)
, (7.104)

again by change of variables.
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7.5 Problem set 5

6.1.1

Solution:

(a) The likelihood function is

L(θ) =

n∏
i=1

1

Γ(4)θ4
x4−1
i e−θxi =

1

Γ(4)n
1

θ4n
e−

∑n
i=1 xi/θ

n∏
i=1

x3
i . (7.105)

The log likelihood function is then

l(θ) = −n ln(Γ(4))− 4n ln θ − 1

θ

n∑
i=1

xi + ln

(
n∏
i=1

x3
i

)
. (7.106)

Next, solve for ∂θl(θ) = 0:

∂θl(θ) = −4n

θ
+

1

θ2

n∑
i=1

xi = 0 ⇐⇒ θ̂ML =
1

4n

n∑
i=1

xi =
x̄

4
(7.107)

(b) R code:

> dat = c(9, 39, 38, 23, 8 ,47 ,21, 22, 18, 10, 17, 22, 14,
+ 9, 5, 26, 11, 31, 15, 25, 9, 29, 28, 19, 8)
> hist(dat , pr=T)
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Figure 7.1: (b)

(c) θ̂ = x̄/4 = 5.03 R code:

> mean(dat)/4
[1] 5.03

> xs=sort(dat)
> y=dgamma(xs ,4,4/ mean(dat))
> hist(dat ,pr=T)
> lines(y~xs)

Locate 4θ̂ on the histogram and overlay with Γ(α = 4, β = θ̂ = 5.03):

> xs=sort(dat)
> y=dgamma(xs ,4,4/ mean(dat))
> hist(dat ,pr=T)
> lines(y~xs)
> abline(v=mean(dat))

The data somewhat agrees with this pdf.
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6.1.2

Solution:

(a) The likelihood function is

L(θ) = θn
n∏
i=1

xθ−1
i , xi ∈ (0, 1), 0 < θ <∞. (7.108)

The log likelihood is

l(θ) = lnL(θ) = n ln θ + (θ − 1)

n∑
i=1

lnxi. (7.109)

Then we solve for θ in ∂θl(θ) = 0:

∂θl(θ) =
n

θ
+

n∑
i=1

ln(xi) = 0 =⇒ θ̂ =
−n∑n
i=1 lnxi

(7.110)

(b) The likelihood function is

L(θ) = e−
∑n
i=1(xi−θ), θ < xi <∞,−∞ < θ <∞. (7.111)

Then the log likelihood is

l(θ) = lnL(θ) = −
n∑
i=1

xi + nθ. (7.112)

Next,

∂θl(θ) = n > 0. (7.113)

So, θ̂ must be as large as possible to maximize L(θ). But at the same
time, θ ≤ xi for all i, so

θ̂ = min
i

(Xi) (7.114)
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6.1.4

Solution:

(a) The likelihood function is

L(θ) =
2n

θ2n

n∏
i=1

xi, 0 < xi ≤ θ. (7.115)

The log likelihood is then

l(θ) = n ln 2− 2n ln θ + ln

(
n∏
i=1

xi

)
. (7.116)

Next,

∂θl(θ) = −2n

θ
. (7.117)

We cannot set this to zero. However, by inspection, L(θ) is maximized
whenever θ is minimized while xi ≤ θ for all i, so

θ̂ = max(Xi) = Yn (7.118)

(b) To find c we first find E(θ̂). To get this, we must first find its cdf.

FYn(x) = P (Yn ≤ x) =

n∏
i=1

P (xi ≤ x) =

n∏
i=1

FX(x) =
x2n

θ2n
. (7.119)

Differentiating this w.r.t. x we get te pdf of Yn:

fYn(x) = ∂xFYn(x) = 2n
x2n−1

θ2n
. (7.120)

From here, calculating the expectation is easy:

E(Yn) =

ˆ θ

0

2n
x2n−1 · x
θ2n

dx =
2n

2n+ 1
θ. (7.121)

Because we want E(cθ̂) = cE(θ̂) = θ, we can just make

c =
2n+ 1

2n
(7.122)
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(c) The median x1/2 is such that:

1

2
=

ˆ x1/2

0

2x

θ2
dx =

x2
1/2

θ2
. (7.123)

So, x1/2 = θ/
√

2. By the invariance property, we have

x̂1/2 =
θ̂√
2

(7.124)

Since E(θ̂) = (2n+ 1)/2n · θ, we see that limn→∞E(θ̂) = θ. Next, look at

the variance of θ̂:

Var(θ̂) = Var(Yn) = E[θ̂2]− E[θ̂]2ˆ θ

0

2n
x2n−1 · x2

θ2n
dx−

(
2n

2n+ 1

)2

θ2

=
2n

2 + 2n
θ2 −

(
2n

2n+ 1

)2

θ2. (7.125)

Obviously, limn→∞ 2n/(2+2n)− (2n/(2n+1))2 = 0, so limn→∞Var(θ̂) =

0. With this, we conclude θ̂ is a consistent estimator of θ.
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6.1.10

Solution: The likelihood function is

L(x; p) =

n∏
i=1

f(xi; p) = p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi . (7.126)

The log likelihood is then

l(p) =

n∑
i=1

xi ln p+

(
n−

n∑
i=1

xi

)
ln(1− p). (7.127)

Taking ∂p of l(p) gives

∂pl(p) =

∑n
i=1 xi
p

+
n−

∑n
i=1 xi

1− p
. (7.128)

Letting ∂pl(p) = 0, we get

p̂ =
1

n

n∑
i=1

xi = X̄ (7.129)

as expected. Now, since 1/2 ≤ p ≤ 1, we must consider the case where X̄ < 1/2.
If X̄ < 1/2, then because p cannot take the value of X̄, it must take the boundary
value of 1/2 at which l(p) is maximized. So,

p̂ = max

(
1

2
, X̄

)
(7.130)
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6.2.2

Solution:

nE
[
(∂θ ln f(x; θ))

2
]

= nE
[
(∂θ(− ln θ))

2
]

= nE

[
1

θ2

]
=

n

θ2
. (7.131)

The reciprocal of this is therefore

θ2

n
. (7.132)

On the other hand,

Var

[
(n+ 1)

n
Yn

]
=

(
n+ 1

n

)2 (
E[Y 2

n ]− E[Yn]2
)
. (7.133)

The cdf of x is given by FX(x) = x/θ. The cdf of Yn is therefore

FY (x) =

n∏
i=1

Fx(x) =
xn

θn
=⇒ fY (x) = n

xn−1

θn
. (7.134)

And so

E[Yn] =

ˆ θ

0

n
xn−1 · x
θn

dx =
nθ

n+ 1
. (7.135)

E[Y 2
n ] =

ˆ θ

0

n
xn−1 · x2

θn
dx =

nθ2

n+ 2
. (7.136)

So,

Var

[
(n+ 1)

n
Yn

]
=

(
n+ 1

n

)2
[
nθ2

n+ 2
−
(

nθ

n+ 1

)2
]

=
θ2

n(n+ 2)
. (7.137)

So, obviously,

Var[Yn] =
θ2

n(n+ 2)
<
θ2

n
. (7.138)

However, since the support of f(x; θ) depends on θ, CRLB does not apply.
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6.2.7

Solution:

(a) From 6.1.1. we know that

∂θl(θ) = −4n

θ
+

1

θ2

n∑
i=1

xi =⇒ ∂2
θ l(θ) =

4n

θ2
− 2

θ3

n∑
i=1

xi (7.139)

And so

nI(θ) = −E

[
4n

θ2
− 2

θ3

n∑
i=1

xi

]

= −4n

θ2
+

2

θ3

n∑
i=1

E[xi]

= −4n

θ2
+

2

θ3
n4θ

= −4n

θ2
+

8n

θ2

=
4n

θ2
=⇒ I(θ) =

4

θ2
(7.140)

(b) From 6.1.1., θ̂ = X̄/4, which is unbiased because

E[θ̂] =
1

4
E[X̄] =

1

4

4nθ

n
= θ. (7.141)
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This is an efficient estimator of θ because

Var[θ̂] =
1

16
Var[X̄] =

1

16n2
Var

[
n∑
i=1

xi

]

=
1

16n2

n∑
i=1

Var[xi]

=
1

16n2
n4θ2

=
θ2

4n
. (7.142)

So, we see that

Var[θ̂] =
1

nI(θ)
, (7.143)

which means Var(Y ) attains the Rao-Cramér lower bound.

(c) The observations are iid with Γ(α = 4, β = θ). The regularity conditions
are also satisfied. Since the Fisher information I(θ) = 4n/θ2 is positive
and finite, Theorem 6.2.2. says that

√
n(θ̂ − θ) D−→ N

(
0,

1

I(θ)

)
= N

(
0,
θ2

4

)
(7.144)

(d) The 95% CI for θ, with α = 0.025, n = 25, σ = θ̂/2, is given by(
θ̂ − zα/2

θ̂/2√
n
, θ̂ + zα/2

θ̂/2√
n

)
=

(
5.03− 1.96

5.03/2

5
, 5.03 + 1.96

5.03/2

5

)
= (4.04, 6.02) (7.145)
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6.2.8

Solution:

(a) Well, the likelihood is just the pdf:

f(x; θ) =
1√
2πθ

e−x
2/2θ, θ ∈ R+ \ {∞}. (7.146)

Then, the log likelihood is

l(θ) = −1

2
ln(2πθ)− x2

2θ
=⇒ ∂θl(θ) = − 1

2θ
+

x2

2θ2
. (7.147)

The Fisher information is then

I(θ) = −E[∂2
θ l(θ)]

= −E
[

1

2θ2
− X2

θ3

]
= − 1

2θ2
+

1

θ3
E[X2]

= − 1

2θ2
+

1

θ3
(Var[X] + �

��
E[X]2 )

= − 1

2θ2
+

1

θ3
θ

=
1

2θ2
(7.148)

(b) We know that the mle of θ is given by

θ̂ =
1

n

n∑
i=1

(xi − 0)2, (7.149)

which is just the sample variance with denominator n. Now, θ̂ is an
unbiased estimator of θ because

E[θ̂] =
1

n

n∑
i=1

E[X2
i + 2Xi · 0 + 0] =

1

n

n∑
i=1

E[X2
i ] =

n

n
Var[X] = θ.

(7.150)
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Next we want to find Var[θ̂]. Well,

Var[θ̂] = Var

[
1

n

n∑
i=1

X2
i

]

=
1

n2

n∑
i=1

Var[X2
i ]

=
n

n2

(
E[X4

i ]− E[X2
i ]2
)

=
n

n2

(
E[X4

i ]−Var[Xi]
2
)

=
n

n2

(
E[X4

i ]− θ2
)
. (7.151)

To find E[X4
i ] we can either brute force:

E[X4] =

ˆ
R
x4 1√

2πθ
e−x

2/2θ dx = 3θ2. (7.152)

Or use the MGF:

M(t) = e�µt+θt
2/2

=⇒ E[X4] = M (4)(0) = (3θ2 + 6t2θ3 + t4θ4)eθt
2/2

∣∣∣∣
t=0

= 3θ2. (7.153)

And so,

Var[θ̂] =
1

n

(
3θ2 − θ2

)
=

2θ2

n
(7.154)

Because Var[θ̂] = 2θ2/n = 1/nI(θ), the CRLB is attained. Further, be-

cause θ̂ is an unbiased estimator of θ, θ̂ is an efficient estimator of θ.

(c) Since all regularity conditions are met, we can use Theorem 6.2.2., which
says that

√
n(θ̂ − θ) D−→ N (0, 1/I(θ)) = N

(
0, 2θ2

)
(7.155)
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6.2.9

Solution: Well, we first show that Y is an unbiased estimator of θ:

E[Y ] = 2E[X̄] =
2

n
nE[Xi] = 2E[Xi] = 2

ˆ ∞
0

3xθ3

(x+ θ)4
dx = 2

θ

2
= θ. (7.156)

So, yes, Y is an unbiased estimator of θ.

The efficiency of Y is given by

ε =
CRLB

Var[Y ]
=

1

Var[Y ] · nI(θ)
(7.157)

To find this we next find the Fisher information:

I(θ) = −E
[
∂2
θ l(θ)

]
= −E

[
∂2
θ ln

3θ3

(X + θ)4

]
= −E

[
∂2
θ ln

3θ3

(X + θ)4

]
= −E

[
θ2 − 6θX − 3X2

θ2(θ +X)2

]
= −

ˆ ∞
0

θ2 − 6θx− 3x2

θ2(θ + x)2
· 3θ3

(x+ θ)4
=

3

5θ2
. (7.158)

Next, we find the variance of Y :

Var[Y ] = Var[2X̄] =
4

n2
Var

[
n∑
i=1

Xi

]
=

4n

n2
Var[Xi] =

4

n

(
E[X2

i ]− E[Xi]
2
)

=
4

n

{ˆ ∞
0

3x2θ3

(x+ θ)4
dx−

[ˆ ∞
0

3xθ2

(x+ θ)4
dx

]2
}

=
4

n

(
θ2 − θ2

4

)
=

3θ2

n
. (7.159)

So,

ε =
5θ2

3θ2 · 3
=

5

9
(7.160)
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7.6 Problem set 6

6.3.1

Solution:

(a) R code:

> dt = c(19, 15, 76, 23, 24, 66, 27, 12, 25, 7, 6, 16, 51, 26, 39)
> hist(dt)
> abline(v=50)

(b) H0 : θ = 50, Ha : θ 6= 50. Example 6.3.1 says that we reject H0 if

2

θ0

n∑
i=1

Xi ≥ χ2
1−α/2(2n) or

2

θ0

n∑
i=1

Xi ≤ χ2
α/2(2n) (7.161)

In our case,

τ =
2

θ0

n∑
i=1

Xi = 17.28, (7.162)
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while

χ2
0.10/2(30) = 18.49266

χ2
1−0.10/2(30) = 43.77297. (7.163)

Since τ < χ2
0.10/2(30), we reject H0.

R code:

> sum(dt)
[1] 432
> (2/50)* sum(dt)
[1] 17.28
> length(dt)
[1] 15
> qchisq (0.10/2 ,30)
[1] 18.49266
> qchisq (1 -0.10/2 ,30)
[1] 43.77297
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6.3.6

Solution: The mle for σ2 is

σ̂2 =
1

n

∑
(Xi − µ0)2. (7.164)

With this,

Λ =
L(θ0)

L(θ̂)
=

(
σ̂2

θ0

)n/2
exp

[
−1

2θ0

n∑
i=1

(xi − µ0)2 +
n

2

∑
(xi − µ0)2∑
(xi − µ0)2

]
. (7.165)

This has the form Λ = n−n/2Wn/2e−W/2en/2, which is unimodal. So, Λ ≤
C =⇒ W ∈ (c1, c2) for some c1, c2. This says we can use W as a testing
statistic. Now, under H0 : θ = θ0, we have that Xi ∼ N (µ0, θ = θ0), and so
(Xi − µ0)/

√
θ0 ∼ N (0, 1). This means W =

∑n
(Xi − µ0)2/θ0 ∼ χ2(n).

We reject whenever W ≥ χ2
1−α/2(n) or W ≤ χ2

α/2(n).
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6.3.11

Solution:

(a) We know that

β̂ =
1

nα

n∑
i=1

Xi =
X̄

α
=
X̄

4
. (7.166)

Λ =
L(θ̂)

L(θ0)
=

1/θ̂4n

1/θ4n
0

exp

[
−
(

1

θ̂
− 1

θ0

)∑
xi

]
∼ (4n)−4n

(∑
xi/θ0

)−4n

exp
[
−
∑

Xi/θ0

]
exp [4n]

= (4n)−4nW−4nθ4n
0 exp [−W/θ0] exp [4n] . (7.167)

So, Λ depends on W as desired. Now, since Xi ∼ Γ(4, θ0) under H0, we
have

2W

θ0
=

2

θ0

∑
Xi ∼ Γ

(
nα,

2θ0

θ0

)
= Γ(4n, 2) = χ2(4n) (7.168)

(b)

c1 =
θ0

2
χ2
α/2(4n) =

3

2
× 9.590777 = 14.38617

c2 =
θ0

2
χ2

1−α/2(4n) =
3

2
× 34.16961 = 51.25441 (7.169)

R code:

> qchisq (1 -0.05/2 ,4*5)
[1] 34.16961
> qchisq (0.05/2 ,4*5)
[1] 9.590777
> 34.16961*1.5
[1] 51.25441
> 9.590777*1.5
[1] 14.38617
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6.3.18

Solution: The setup of this problem is exactly like that of 6.3.11. The likelihood
ratio test of H0 : β = β0 versus Ha : β 6= β0 is based upon the statistic
W =

∑
Xi. The null distribution of 2W/β0 is χ2(nα), under H0. We reject

whenever W ≤ c1 or W ≥ c2, where

c1 =
β0

2
χ2
α/2(αn)

c2 =
β0

2
χ2

1−α/2(αn). (7.170)



134 PART 7. PROBLEMS

6.4.1

Solution:

(a) The mle for each pi is

p̂i =
# Observations of i

n
. (7.171)

(b)

CI1 =
(
p̂1 − zα/2

√
p̂1(1− p̂1)/n, p̂1 + zα/2

√
p̂1(1− p̂1)/n

)
=

(
60

200
− 1.96× 0.0324037,

60

200
+ 1.96× 0.0324037

)
= (0.2364887, 0.3635113) (7.172)

CI2 =

(
45

200
− 1.96× 0.02952753,

45

200
+ 1.96× 0.02952753

)
= (0.167126, 0.282874) (7.173)

CI3 =

(
70

200
− 1.96× 0.03372684,

70

200
+ 1.96× 0.03372684

)
= (0.2838954, 0.4161046) (7.174)

CI4 =

(
25

200
− 1.96× 0.02338536,

25

200
+ 1.96× 0.02338536

)
= (0.0791647, 0.7732091) (7.175)
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6.4.3

Solution: The likelihood function is

L(θ1, θ2) =
1

θn2
exp

[
− 1

θ2

n∑
i=1

(xi − θ1)

]
. (7.176)

with the support given in the problem. We find

lnL = −n ln θ2 −
1

θ2

n∑
i=1

(xi − θ1). (7.177)

And so,

∂θ1 lnL(θ1, θ2) =
n

θ2
> 0 =⇒ θ̂1 = Argmax lnL(θ1, θ2) = min

i
Xi

∂θ2 lnL(θ̂1, θ2) = − n
θ2

+
1

θ2
2

n∑
i=1

(
xi − θ̂1

)
= 0 =⇒ θ̂2 =

1

n

n∑
i=1

(Xi −min
i
Xi)

(7.178)

where we have used θ̂1 = miniXi in writing the mle for θ2.
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6.4.5

Solution: It’s not difficult to see that

θ̂ − ρ̂ = minYi = Y1

θ̂ + ρ̂ = maxYi = Yn. (7.179)

Solving this for θ̂, ρ̂ gives

θ̂ =
Yn + Y1

2

ρ̂ =
Yn − Y1

2
. (7.180)

Next,

FY1
(x) = P (Y1 ≤ x) = P (min

i
Yi ≤ x)

= 1− P (min
i
Yi > x)

= 1−
n∏
i=1

P (Yi > x)

= 1− (1− FYi(x))n = 1−
(

1−
ˆ x

θ−ρ

1

2ρ
dx

)n
= 1−

(
1− x− θ + ρ

2ρ

)n
=⇒ fY1

(x) =
n(θ + ρ− x)n−1

(2ρ)n
(7.181)

And so,

E[Y1] =

ˆ θ+ρ

θ−ρ
x
n(θ + ρ− x)n−1

(2ρ)n
dx =

1− n
1 + n

ρ+ θ (7.182)
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Next,

FYn(x) = P (Yn ≤ x) = P (max
i
Yi ≤ x)

=

n∏
i=1

P (Yi ≤ x) =

n∏
i=1

FYi

=
(x− θ + ρ)n

(2ρ)n

=⇒ fYn(x) =
n(x− θ + ρ)n−1

(2ρ)n
. (7.183)

And so,

E[Yn] =

ˆ θ+ρ

θ−ρ
x
n(x− θ + ρ)n−1

(2ρ)n
dx =

n− 1

n+ 1
ρ+ θ. (7.184)

With these,

E[θ̂] = E

[
Yn + Y1

2

]
=

1

2
E [2θ] = θ

E[ρ̂] = E

[
Yn − Y1

2

]
=

1

2
E

[
n− 1− 1 + n

n+ 1
ρ

]
= ρ. (7.185)

So, θ̂ and ρ̂ are unbiased.
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6.5.3

Solution:

(a) H0 : p1 = p2 and Ha : p1 6= p2.

χ2
W =

(p̂1 − p̂2)2

(p̂1 + p̂2 − (p̂1 − p̂2)2)/n

=
(60/200− 45/200)2

(60/200 + 45/200− (60/200− 45/200)2)/200

= 2.167 (7.186)

Clearly, 2.167 < 3.81 = χ2
0.05(1). So, we fail to reject H0 – there is

not enough evidence to reject the null hypothesis that the proportions of
people who vote Yes and No are the same.

(b) The 95% CI for p1 − p2 is

(
60

200
− 45

200

)
± z0.05/2

(
60
200 + 45

200 −
(

60
200 −

45
200

)2
200

)1/2

(7.187)

= (−0.025, 0.175) . (7.188)

Since the CI contains 0, we fail to reject H0.
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6.5.6

Solution:

(a) H0 : θ1 = θ2 and Ha : θ1 6= θ2. Xi ∼ N (0, θ1) and Yi ∼ N (0, θ2). So,

L(θ1, θ2) = (2πθ1)−n/2(2πθ2)−m/2 exp

[
− 1

2θ1

n∑
i=1

x2
i −

1

2θ2

m∑
i=1

y2
i

]
.

(7.189)

Under H0 : θ1 = θ2:

∂θ lnL(θ1 = θ2 = θ) = 0 =⇒ −n+m

2
− 1

2θ

[
n∑
x2
i +

m∑
y2
i

]
= 0

=⇒ θ̂ =
1

n+m

[
n∑
x2
i +

m∑
y2
i

]
. (7.190)

With this,

L(Θ̂0) =

(
2π

n+m

[
n∑
x2
i +

m∑
y2
i

])−n+m
2

exp

[
−

∑n
x2
i +

∑m
y2
i

2
n+m (

∑n
x2
i +

∑m
y2
i )

]

=

(
2π

n+m

[
n∑
x2
i +

m∑
y2
i

])−n+m
2

exp

[
−n−m

2

]
. (7.191)

In the joint space,

θ̂1 =
1

n

n∑
x2
i

θ̂2 =
1

m

m∑
y2
i . (7.192)

With these,

L(Θ̂) =

(
2π

n

n∑
x2
i

)−n/2(
2π

m

m∑
y2
i

)−m/2
exp

[
−n−m

2

]
. (7.193)
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And so we have

Λ =
L0

L
=

(
1

n+m

[∑n
x2
i +

∑m
y2
i

])−n+m
2

(
1
n

∑n
x2
i

)−n/2 ( 1
m

∑m
y2
i

)−m/2
=

(n+m)
n+m

2

nn/2mm/2

(∑n
x2
i

)n/2 (∑m
y2
i

)m/2
[
∑n

x2
i +

∑m
y2
i ]
n+m

2

=
(n+m)

n+m
2

nn/2mm/2

 ∑n
x2
i∑n

x2
i +

∑m
y2
i︸ ︷︷ ︸

T


n/2


∑n
x2
i∑m

y2
i +

∑m
y2
i︸ ︷︷ ︸

1−T


m/2

.

(7.194)

(b) Λ ≤ k is equivalent to W ≤ c1 or W ≥ c2 with

W =
1
n

∑n
x2
i

1
m

∑m
y2
i

∼ F (n,m) (7.195)

such that 1/T = 1 + 1/W . This is because
∑n

x2
i /θ ∼ χ2(n),

∑m
y2
i /θ ∼

χ2(m) under H0.
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6.5.7

Solution: We did this in “class,” so I will skip a few steps. Let Xi ∼ exp(θ1)
and Yi ∼ exp(θ2). H0 : θ1 = θ2 and Ha : θ1 6= θ2. The null space is {{θ1, θ2} :
θ1 = θ2 > 0}. The alternative space is {{θ1, θ2} : θ1 6= θ2, θ1, θ2 6= 0}. The joint
space is just {{θ1, θ2}, θ1 > 0, θ2 > 0}. It’s easy to see that

L(θ1, θ2|X,Y ) =
1

θn1
e
∑n xi/θ1

1

θm2
e
∑m yi/θ2 . (7.196)

From here one finds that under H0 : θ1 = θ2 = θ:

l(Θ0) = −(n+m) ln θ − 1

θ

(∑
xi +

∑
yi

)
. (7.197)

And so

∂θl(θ) = 0 =⇒ θ̂0 =
1

n+m

(∑
xi +

∑
yi

)
. (7.198)

With this, we can plug back in to calculate the numerator:

L(Θ̂0) = · · · =
(

1

n+m

[∑
xi +

∑
yj

])−n−m
exp(−n−m). (7.199)

In the joint space,

l(Θ) = −n ln θ − 1

θ

∑
xi −m lnµ− 1

µ

∑
yj . (7.200)

And so

∂θ1 l(Θ) = 0 =⇒ θ̂1 = x̄ (7.201)

∂θ2 l(Θ) = 0 =⇒ θ̂2 = ȳ. (7.202)

With these,

L(Θ̂) = . . . (7.203)

=
1(

1
n

∑
xi
)n exp

[
− 1

1
n

∑
xi

∑
xi

]
1(

1
m

∑
yi
)m exp

[
− 1

1
m

∑
yi

∑
yi

]
(7.204)

=
1(

1
n

∑
xi
)n e−n 1(

1
m

∑
yi
)m e−m. (7.205)
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Putting everything together, we find

Λ =
L0

L
= · · · =

1
(n+m)−n−m (

∑
xi +

∑
yj)
−n−m

1
nn

1
mm (

∑
xi)
−n

(
∑
yi)
−m . (7.206)

We reject if Λ < c, iff

(n+m)n+m

nnmm

(
∑
xi)

n
(
∑
yi)

m

(
∑
xi +

∑
yj)

n+m < c (7.207)

iff (letting c absorb the constant)

(
∑
xi)

n
(
∑
yi)

m

(
∑
xi +

∑
yj)

n+m < c′ (7.208)

What does the distribution of Λ look like? Notice that we reject if

Λ =
(n+m)n+m

nnmm

(
∑
xi)

n
(
∑
yi)

m

(
∑
xi +

∑
yj)

n+m (7.209)

=
(n+m)n+m

nnmm

( ∑
xi∑

xi +
∑
yj

)n( ∑
yi∑

xi +
∑
yj

)m
(7.210)

=
(n+m)n+m

nnmm
Tn(1− T )m < c (7.211)

which is akin to saying that we reject if T < a or T > b. What is the distribution
of T under H0? Note that under H0,

∑
xi ∼ Γ(n, θ) and

∑
yi ∼ Γ(m, θ). By

transformation method, we can show that T ∼ β(n,m) .

Notice that

1

T
= 1 +

∑
yj∑
xi

= 1 +
m

n

∑
yj/m∑
xi/n

(7.212)

Since
∑
Xi ∼ Γ(n, θ),

∑
Yi ∼ Γ(m, θ) under H0 we have that 2θXi ∼ χ2(2n)

and 2θYi ∼ χ2(2m). This means we can call

W =

∑
yj/m∑
xi/n

=
2θ
∑
yi/m

2θ
∑
xi/n

∼ F (2m, 2n) . (7.213)
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7.7 Problem set 7

7.2.1

Solution: On the one hand

n∏
i=1

f(xi; θ) = (2πθ)−n/2e−
∑
x2
i /2θ. (7.214)

On the other hand, xi/
√
θ ∼ N (0, 1), which means Y =

∑
X2
i /θ ∼ χ2(n),

whose pdf is

fY

(∑
X2
i /θ
)

=
1

2n/2Γ(n/2)

(∑
X2
i /θ
)n/2−1

e−(
∑
X2
i /θ)/2. (7.215)

And so,

(2πθ)−n/2e−
∑
x2
i /2θ

θ−1 1
2n/2Γ(n/2)

(
∑
X2
i /θ)

n/2−1
e−(

∑
X2
i /θ)/2

is independent of θ, (7.216)

where the factor θ−1 in the denominator comes from the scaling Jacobian. Since
the ratio is independent of θ, we say

∑
X2
i is sufficient.

Alternative, we can also use the factorization theorem here, with k2 = 1 and
k1 =

∏
f(xi; θ).
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7.2.4

Solution: On the one hand,

A =

n∏
i=1

f(xi; θ) = (1− θ)
∑
xiθn. (7.217)

On the other hand, since each Xi ∼ Geom(θ), the sum Y =
∑n
i=1Xi ∼

NegBin(n, θ), which means

B = fY

(
y =

∑
xi

)
=

(∑
xi + r − 1∑

xi

)
θn(1− θ)

∑
xi

Clearly, the ratio is independent of θ, so we say
∑
Xi is sufficient.

Alternative, we can also use the factorization theorem, with k2 = 1 and
k1 = A.
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7.2.7

Solution: Let X1, . . . , Xn be iid r.v. from Γ(θ, β). Consider Y =
∏
Xi. Then

we have

n∏
i=1

f(xi; θ) =

[
1

Γ(θ)nβnθ

n∏
i=1

xθ−1
i

] [
e
∑
xi/β

]
where β = 6 is fixed. We can identify the first term as k1 and the second term
as k2. k1, k2 are both nonnegative functions. k1 is a function of Y and θ, and
k2 is a function of only the data. So the factorization theorem tells us Y is
sufficient.
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7.2.8

Solution: Let X1, . . . , Xn be iid r.v. from B(θ, θ), then

f(xi; θ) =
Γ(2θ)xθ−1

i (1− xi)θ−1

Γ2(θ)
(7.218)

So,

n∏
i=1

f(xi; θ) =
Γn(2θ)

∏n
i=1

[
xθ−1
i (1− xi)θ−1

]
Γ2n(θ)

(7.219)

We identify

n∏
i=1

[xi(1− xi)]θ−1

as a sufficient statistic by the factorization theorem, where k1 is the entire∏n
i=1 f(xi; θ) and k2 = 1.
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7.3.1 (Do only for exercises 7.2.1 and 7.2.4)

Solution: Going back to 7.2.1 and 7.2.4 we see that this is the case. In both
exercises, we can just set k2 = 1 and k1 =

∏n
i=1 f(xi; θ) = L(xi; θ) and we can

easily see that the mle of θ is a function of the sufficient statistic for θ.

In 7.2.1, the mle of θ is (1/n)
∑n
i=1X

2
i , and the sufficient statistic for θ is∑n

i=1X
2
i . So, θ̂ = (1/n)Yθ where Yθ is the sufficient statistic for θ.

For 7.2.4, we have to find the mle of θ. Well, the log likelihood is

∂θl(θ) =
∑

xi
−1

1− θ
+
n

θ
= 0 =⇒ θ̂ =

1

X̄ + 1
.

Of course, θ̂ is a function of the sum of the observations,
∑
Xi, which is the

sufficient statistic for θ.
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7.3.3

Solution: We have that X1 = Y1 − Y2 and X2 = Y2 are iid r.v.’s. The joint pdf
of Y1, Y2 is

fX1,X2
= fY1,Y2

(y1, y2; θ) = (1/θ)2e−y2/θ. (7.220)

We have

E[Y2] =

ˆ ∞
0

y(1/θ)2e−y/θ dy = θ, (7.221)

so Y2 is unbiased. Also,

Var[Y2] = E[Y 2
2 ]− θ2 =

ˆ ∞
0

y(1/θ)2e−y/θ dy − θ2 = 2θ2 − θ2 = θ2.

Next,

fY1
(y1) =

ˆ y1

0

(1/θ)2e−y1/θ dy2 = (1/θ)2y1e
−y1/θ. (7.222)

And so,

fY2|Y1=y1
=

(1/θ)2e−y2/θ

(1/θ)2y1e−y1/θ
=

1

y1
, y2 ∈ (0, y1) (7.223)

So,

E[Y2|y1] =
y1

2
.

Finally,

Var[Y1/2] =
1

4
Var[Y1] =

1

4
Var[X1 +X2] =

2θ2

4
=
θ2

2
.
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7.3.4

Solution:

(a)

E[Y2] =

ˆ ∞
0

ˆ ∞
x

y(2/θ2)e−(x+y)/θ dy dx =
3θ

2
.

Var[Y2] =

ˆ ∞
0

ˆ ∞
x

y2(2/θ2)e−(x+y)/θ dy dx =
3θ

2
− 9θ2

4
=

5θ2

4
.

(b)

fX(x) =

ˆ ∞
y=x

(2/θ2)e−(x+y)/θ dy = (2/θ)e−2x/θ, x ∈ (0,∞)

And so

fY (y) = fX,Y /fX = (1/θ)e−(y−x)/θ.

So,

E[Y |x] =

ˆ ∞
x

(1/θ)e−(y−x)/θ dy = x+ θ.

Var[X + θ] = Var[X] = E[X2]− E2[X]

=

ˆ ∞
0

2x2

θ
e−2x/θ dx−

(ˆ ∞
0

2x

θ
e−2x/θ dx

)2

=
θ2

2
− θ2

4
=
θ2

4
.
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7.4.3

Solution:

n∏
i=1

f(xi; θ) = θ
∑
xi(1− θ)n−

∑
xi

the factorization theorem tells us
∑
xi is sufficient. Now, set E[u(Y1)] = 0 then

because

fY (y) =

(
n

y

)
θy(1− θ)n−y, (7.224)

we have

0 = u(0)

(
n

0

)
θ0(1− θ)n + u(1)

(
n

1

)
θ1(1− θ)n−1 + . . . (7.225)

We can expand this out into an n-degree polynomial in θ that is equal to zero
for all θ. The leading coefficient is u(0), so the polynomial is identically zero if
u(0) = 0. Continue with this argument for the next term, we see that u(1) = 0
too. So, u(x) = 0 for all natural x. This means u(Y1) = 0, so Y1 is also com-
plete. So, Y1 is a complete statistic for θ.

To find a unique function of Y1 that is the MVUE of θ, it suffices to find
ϕ(Y1) such that ϕ(Y1) is an unbiased estimator for θ (Lehmann-Scheffé theorem).
Well,

ϕ(Y1) =
1

n
Y1 =

1

n

∑
Xi

is an unbiased estimator for θ since

E[
∑

Xi/n] = E[Xi] = θ.

Because Y is complete sufficient, this function is the unique MVUE for θ.
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7.4.5

Solution:

FY1(y) = P (Y1 ≤ y) = 1− P (Y1 ≥ y)

= 1−
n∏
P (Xi ≥ y)

= 1−
n∏
e−(y−θ)

= 1− e−n(y−θ) (7.226)

So,

fY1(y) = ne−n(y−θ). (7.227)

So, ∏n
i=1 e

−(xi−θ)

ne−n(y−θ) =
e−

∑
xi

ne−ny1
(7.228)

which is independent of θ. So Y1 is sufficient. Now, suppose E[u(Y1)] = 0, then

ˆ ∞
θ

u(y)ne−n(y−θ) = 0 =⇒ nu(θ) = 0 =⇒ u(θ) = 0 (7.229)

so Y1 is complete. Now, the unique function of this statistic which is the MVUE
of θ is a function of Y that is also an unbiased estimator for θ. Further,

E[Y1] =

ˆ ∞
θ

ne−n(y−θ) dy =
1

n
+ θ.

And so the function Y1− 1
n is an unbiased estimator for θ. Since this is a function

of Y1 which is complete sufficient, minXi − 1
n is an MVUE of θ.
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7.4.9

Solution:

1.

L(θ) =
1

3nθn

n∏
i=1

I(−θ < xi < 2θ)

this is a decreasing function in θ. Thus it is maximized whenever θ̂ is
minimized, which means θ̂ has no choice but to be max{−x(1), x(n)/2}.

2. The factorization theorem tells us that max{−x(1), x(n)/2} is sufficient
because L can be factored into K1 which is essentially the entire likelihood
function andK2 as the constantly 1 function (multiplied by a characteristic
equation which we won’t worry about).

3. The pdf for Y1 can be found via

FY1
(y) = P (Y1 ≤ y) = 1− P (Y1 > y)

= 1−
n∏
i=1

P (Xi > y)

= 1−
(

1− y + θ

3θ

)n
. (7.230)

So,

fY1(y) =
n

(3θ)n
[2θ − y]

n−1
. (7.231)

Similarly,

fYn(y) =
n

(3θ)n
[y + θ]

n−1
. (7.232)

So,if

0 = E[u(Y1)] =

ˆ 2θ

−θ
u(y)

n

(3θ)n
[2θ − y]

n−1 ∂θ=⇒ u(−θ) n

(3θ)n
(3θ)n−1 = 0

(7.233)
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0 = E[u(Yn)] =

ˆ 2θ

−θ
u(y)

n

(3θ)n
[y + θ]

n−1 ∂θ=⇒ u(2θ)
n

(3θ)n
(3θ)n−1 = 0

(7.234)

So by rescaling, u(θ) = 0 identically. So, θ̂ is complete sufficient. So, if

(n+ 1)θ̂/n is an unbiased estimator for θ, it will be an MVUE for θ. Well,

we need to find E[θ̂], which means we need to find the pdf of θ̂. Well,

θ̂ = max{−X1, Xn/2}:

Fθ̂(τ) = P (θ̂ ≤ τ)

=

n∏
i=1

P (xi ∈ [−τ, 2τ ]) =
3nτn

3nθn
=
τn

θn
. (7.235)

So, fθ̂(τ) = (n/θ)(τ/θ)n−1, with 0 ≤ θ̂ ≤ θ, so

E[θ̂] =

ˆ θ

0

τ(n/θ)(τ/θ)n−1 dτ =
n

1 + n
θ. (7.236)

So, (n+ 1)θ̂/n is the unique MVUE for θ.
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7.5.1

Solution:

1

6θ4
x3e−x/θ = e−x/θ+ln x3−ln(6θ4) (7.237)

We notice that Xi ∼ Γ(4, θ). The joint pdf of the Xi’s is

exp

[
−1

θ

∑
xi + ln

∏
x3
i − n ln

(
6θ4
)]

= exp

[
−1

θ

∑
xi − n ln

(
6θ4
)]

exp
[
ln
∏

x3
i

]
(7.238)

The factorization theorem tells us that Y1 =
∑n
i=1 xi is a sufficient statistic.

Since K(x) = x, theorem 7.5.2. says Y1 is also complete. So, Y1 is complete
sufficient. Now,

E[Y1] = E
[∑

Xi

]
= 4nθ,

so ϕ(Y1) = (1/4n)Y1 is a function of the complete sufficient Y1 and is an unbiased
estimator of θ. This means (1/4n)

∑
Xi is a MVUE of θ. Since ϕ(Y1) is just a

rescaled version of Y1 (hence is one-to-one), ϕ(Y1) is also a complete sufficient
statistic.
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7.5.3

Solution:

1. We rewrite the pdf as

f(xi; θ) = exp [ln θ + (θ − 1) lnx] . (7.239)

We check that f(xi; θ) belongs to the regular exponential family. So, the
with the joint pdf given by

n∏
i=1

f(xi; θ) = exp

[
n ln θ + (θ − 1)

n∑
i=1

lnxi

]
(7.240)

Let K(x) = lnx, then Theorem 7.5.2 says that Y1 =
∑n
i=1 lnxi is com-

plete sufficient. Now, consider the one-to-one transformation ϕ(Y1) =

exp [Y1/n] which gives the complete sufficient statistic [
∏
xi]

1/n
. So, the

geometric mean is a complete sufficient statistic of θ.

2.

∂θ

[
n ln θ + (θ − 1)

n∑
i=1

lnxi

]
= 0

=⇒ θ̂ = − n∑n
i=1 lnXi

= − 1

ln [
∏n
i=1Xi]

1/n
(7.241)

where of course the denominator is natural log of the geometric mean.
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7.8 Problem set 8

7.6.1

Solution: Well, X̄ is a sufficient statistic for θ. Also, E[X̄2] = Var[X̄]+E[X̄]2 =
1
n2 +θ2. Obviously the MVUE of θ2 here will be X̄2− 1

n2 , by Rao-Blackwell.
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7.6.9

Solution:

L(θ) =
1

θn
exp

[
−1

θ

∑
xi

]
. (7.242)

∂θl(θ) = 0 =⇒ θ̂ = X̄. (7.243)

So the mle for θ is X̄. Now,

P (X ≤ 2) =

ˆ 2

0

1

θ
e−x/θ dx = 1− e−2/θ. (7.244)

So the mle for P (X ≤ 2) is P̂ = 1− e−2/X̄ .

Define the function u(X) as

u(X̄) =

{
1, x ∈ [0, 2]

0, else
(7.245)

then obviously E[u(X)] = 1 · P (X ≤ 2) = P (X ≤ 2), is an unbiased estimator
for P (X ≤ 2). Rao-Blackwell says the function ϕ(y) = E[u(X)|Y = y] where
y =

∑
xi is the MVUE for P (X ≤ 2). This is because we know that

∑
xi = nX̄

is a sufficient statistic for θ. We want to evaluate ϕ(y). To do this we need the
joint pdf for

∑
Xi and X1. First we have the density of

∑
xi:

g(
∑

xi, θ) = Γ(n, θ) =
1

Γ(n)θn

(∑
xi

)n−1

e−
∑
xi/θ. (7.246)

With this, the joint pdf

fX1,
∑
Xi(x, y, θ) =

∂2P (x1 ≤ x,
∑
xi ≤ y)

∂xi∂
∑
xi

=
∂2P (x1 ≤ x)P (

∑n
2 xi ≤ y − x)

∂x1∂
∑
xi

=
∂2

∂x1∂
∑
xi

[
Γ(1, x/θ)

Γ(1)

Γ(n− 1, (y − x)/θ)

Γ(n− 1)

]
=

1

Γ(n− 1)

(
(x/θ)1−1e−x/θ((y − x)/θn−1)n−2e−(y−x)/θ

)
=

1

θn(n− 2)!
(y − x)n−2e−y/θ (7.247)
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on the support 0 < x1 <
∑
xi < ∞. Okay, with this, the pdf of

∑
xi is given

by

f∑Xi(y) =

ˆ ∞
0

1

θn(n− 2)!
(y − x)n−2e−y/θ dxn (7.248)

= . . .

=
1

θn(n− 1)!
yn−1e−y/θ (7.249)

on the support 0 < y < ∞, where I have used the incomplete gamma function
Γ(·, ·). So, the conditional pdf for X1 = x given

∑
Xi = y is

g(X1 = x|
∑

Xi = y) =
fX1,

∑
Xi(x, y, θ)

f∑Xi(y, θ)
=

(n− 1)(y − x)n−2

yn−1
(7.250)

From here we are effectively done:

E[u(X)|
∑

Xi = y] =

ˆ ∞
0

u(x)
(n− 1)(y − x)n−2

yn−1
dx

=

ˆ 2

0

(n− 1)(y − x)n−2

yn−1
dx

= . . .

= 1−
(

1− 2

y

)n−1

. (7.251)

With y =
∑
xi, Rao-Blackwell says the MVUE for P (X ≤ 2) is

1−
(

1− 2

nX̄

)n−1

(7.252)
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7.8.1

Solution:

(a) The likelihood function is

L(θ) =
∏

θxi(1− θ)1−xi = θ
∑
xi(1− θ)n−

∑
xi . (7.253)

∂θl(θ) = 0 =⇒ 1

θ

∑
xi +

1

1− θ
∑

xi −
1

θ
n = 0 =⇒ θ̂ = X̄ . (7.254)

Looking at the likelihood function and the Factorization theorem, we know
X̄ is sufficient. There’s no way to reduce the number of statistics, so this
is also minimal.

(b) The likelihood function is

L(θ) = θ
∑
xie−nθ

1∏
xi!
. (7.255)

∂θl(θ) = 0 =⇒ θ̂ = X̄ (7.256)

The factorization theorem tells us that
∑
Xi is sufficient, so X̄ is suffi-

cient. This is also minimal because we can’t further reduce the number of
statistics.

(c) The likelihood function is

L(θ) =
1

Γn(3)θ3n

∏
x2
i e
−

∑
xi/θ. (7.257)

∂θl(θ) = 0 =⇒ θ̂ =
1

3n

∑
Xi =

X̄

3
(7.258)

Once again this is a sufficient statistic as guaranteed by the factorization
theorem, so it is minimal sufficient because we can’t reduce any further.
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(d) This is well-known so I won’t bother with the math anymore. θ̂ = X̄ .
The likelihood function looks like

L(θ) ∝
∏

e−(xi−θ)2/2 = exp

[
−1

2

(∑
x2
i − 2θ

∑
xi + nθ2

)]
. (7.259)

The factorization tells us that
∑
Xi is a sufficient statistic for θ, and hence

so is X̄. Since no more reduction can be done, X̄ is minimal.

(e) Again, we did this before: θ̂ = [(n− 1)/n]S2 = (1/n)
∑
X2
i where S2 is

the sample variance. The likelihood function looks like

L(θ) ∝ (θ)−n/2 exp

[
− 1

2θ

(∑
x2
i

)]
. (7.260)

The factorization theorem says
∑
x2
i is a sufficient statistic. Rescaling this

by 1/n gives [(n− 1)/n]S2 also sufficient, hence minimal sufficient (since
no more reduction can be done).
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7.8.3

Solution: Without order, the joint pdf looks like

1

θn2
e−

1
θ2

∑
(xi−θ1)

∏
I(θ,∞)(xi) =

1

θn2
e−

1
θ2

∑
(xi−θ1)I(θ,∞)[minxi]

=
1

θn2
e−

1
θ2

∑
(xi−θ1)I(θ,∞)(y1) (7.261)

because θ ≤ minxi = y1 <∞. The multi-parameter factorization theorem says
Y1 = minXi and

∑
Xi ≡

∑
Yi are sufficient statistics for θ1, θ2. Obviously,

there’s no reduction after this, so they are jointly minimal sufficient statistics
for θ1, θ2.
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7.8.5

Solution:

(a) Well,

X2
1∑
X2
i

=
X2

1/θ
2∑

X2
i /θ

2
=

W 2
1∑
W 2
i

. (7.262)

(b) Same thing here, provided θ > 0,

minXi

maxXi
=

minXi/θ

maxXi/θ
=

minWi

maxWi
. (7.263)
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7.9.4

Solution: Well, since X/Y and Y are independent and that functions of inde-
pendent random variables are independent, we have that

E[Xk] = E[(X/Y )kY k] = E[(X/Y )k] · E[Y k]. (7.264)

So,

E[(X/Y )k] = E[Xk]/E[Y k]. (7.265)
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7.9.13

Solution:

(a) The pdf is just a Γ(α = 3, β = 1/θ), so

L(θ) =
1

2n
θ3n exp

[
θ
∑

xi

]∏
x2
i . (7.266)

∂θl(θ) = 0 =⇒ θ̂ =
3n

θ
−
∑

xi = 0 =⇒ θ̂ =
3n∑
Xi

=
3

X̄
. (7.267)

Next we want to find the pdf of Y =
∑
Xi. Well, this is easy because

Xi ∼ Γ(3, 1/θ) =⇒ Y ∼ Γ(3n, 1/θ). So,

E[θ̂] =

ˆ ∞
0

3n

y

1

Γ(3n)
θ3ny3n−1e−θy dy = · · · = 3nθΓ(3n− 1)

Γ(3n)
=

3nθ

3n− 1
= θ.

(7.268)

So θ̂ is an biased.

(b) Well obviously Y ∼ Γ(3n, θ) is a member of the regular exponential class.
Theorem 7.5.2. says that Y =

∑
Xi is a sufficient statistic for θ and the

family {fY (y; θ)} is complete. This means Y is complete sufficient.

(c) After correcting for the bias, we have that [(3n − 1)/3n]θ̂ is an unbiased

estimator for θ. We also have that [(3n−1)/3n]θ̂ is a function of Y =
∑
Xi

which is a complete sufficient statistic for θ. Theorem 7.5.3. says that

[(3n− 1)/3n]θ̂ = (3n− 1)/Y is the MVUE for θ.

(d) Basu’s theorem comes in handy here. First, we have that Y is a com-
plete sufficient statistic for θ. Now, we look at the statistic Z = X1/Y .
Let us use the fact that if Xi ∼ Γ(al, β) then θXi ∼ Γ(α, θβ). So,
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Z = X1/Y = θX1/θY . The numerator and the denominator follow dis-
tributions Γ(3, 1) and Γ(3n, 1) respectively, independent of θ. So, the pdf
of Z is also independent of θ. This means Z is ancillary for θ. Basu’s
theorem says that Z = X1/Y and Y are independent.

(e) To find the pdf of X1/Y we have to split Y up. Write Y = X1 + S where
S =

∑n
2 Xi. It’s clear that X1 ∼ Γ(3, 1/θ) and S ∼ Γ(3(n − 1), 1/θ) and

that X1 and S are independent. Call A = X1/Y = X1/(X1 + S) and
B = X1 + S. Then we have the inverse transformation:

x1 = ab, s = b− ba = b(1− a). (7.269)

So the Jacobian is

|J | =
∣∣∣∣det

[
b a
−b 1− a

]∣∣∣∣ = b. (7.270)

Now, because X1 and S are independent,

fA,B(a, b) = fX1,S(x1, s) · b
= fX1

(x1 = ab)fS(s = b(1− a)) · b

=
θ3

2
(ab)2e−θab

bθ3(n−1)

Γ(3(n− 1))
(b(1− a))3(n−1)−1e−θb(1−a).

(7.271)

Of course since A,B are independent as shown in the previous item, we
can factor fA,B into fAfB . We’re only interested in fA which turns out
to be

fA(a) = fX1/Y (a) ∝ a2(1− a)3(n−1)−1 = a3−1(1− a)3(n−1)−1. (7.272)

This looks like a β(3, 3(n− 1)), so X1/Y ∼ β(3, 3(n− 1)) .
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8.1.2

Solution: Well, as usual we look at the likelihood ratio:

L(θ′)

L(θ′′)
=
θ′

θ′′
e−(X1+X2)/θ′+(X1+X2)/θ′′ = 2e−(X1+X2)/4 < K =⇒ X1 +X2 > K ′.

(7.273)

It is possible to find K ′, as done in class. This shows we can use X1 + X2 to
carry out the best test of H0.
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8.1.5

Solution: Again, look at the likelihood ratio:

L(θ′)

L(θ′′)
=
L(1)

L(2)
=

1

2n
∏
xi
≤ K =⇒

∏
xi ≥

1

2nK
= c. (7.274)

for some c. So, it is clear that the best critical region is C = {x :
∏
xi ≥ c}

(reject whenever x ∈ C).
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8.1.8

Solution: Again we look at the likelihood ratio:

L(1)

L(2)
=

6n∏
xi(1− xi)

≤ K =⇒
∏

xi(1− xi) ≥ c =
1

6nK
. (7.275)

So a best critical region for testing H0 against H1 is C = {x : c ≤
∏
xi(1 −

xi)}.
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8.2.2

Solution: We have found the pdf for the max of a uniform many times before,
so I won’t derive it again. The pdf for Y4 is

gY4
(y) = 4y3/θ4. (7.276)

Recall that the power function γ(θ) is

γ(θ) = P ( reject H0|HA true) = P (y4 ≤ 1/2 or y4 > 1|θ 6= 1). (7.277)

If 0 < θ < 1 we have

γ(θ) =

ˆ 1/2

0

4y3/θ4 dy =
1

16θ4
(7.278)

If θ > 1 we have

γ(θ) =

ˆ 1/2

0

4y3/θ4 dy +

ˆ θ

1

4y3/θ4 dy =
1

16θ4
+ 1− 1

θ4
= 1− 15

16θ4
(7.279)
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8.2.7

Solution: Well,

L(θ = 75)

L(θA)
= exp

[
− 1

2 · 10

(∑
(xi − 75)2 −

∑
(xi − θA)2

)]
≤ K

=⇒ exp

[
1

10

(
−(θA − 75)

∑
xi +

n

2

[
θ2
A − 752

])]
≤ K

=⇒ (θA − 75)
∑

xi ≥
10n

2

[
θ2
A − 752

]
− 10 lnK

=⇒
∑

xi ≥
10n

2
(θA + 75)− 10 lnK

θA − 75
(7.280)

provided that θA > 75, which is the case here. Call the RHS K ′. Then, because∑
Xi ∼ N (25 · 75, 2500) under the null, we have

α = 0.10 =

ˆ ∞
K′

1√
5000π

e−(x−25·75)2/(5000) dx =⇒ K ′ =
1

2
Erfc

[
−1857 +K ′

50
√

2

]
(7.281)

So,

Erfc−1[0.2] =
−1857 +K ′

50
√

2
=⇒ K ′ = 1939.08. (7.282)

So, the most powerful critical region is

C = {x :
∑

xi ≥ 1939.08} (7.283)

Or, in terms of the mean,

C = {x : x̄ ≥ 1939.08/25 = 77.5632} (7.284)

So we reject if x̄ ≥ 77.5632. The form of this does not depend on θA, so this
test is the UMP for HA : θ > 75.
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8.2.11

Solution: Well, the likelihood ratio for θ′ > θ′′ is

L(θ′)

L(θ′′)
= (θ′/θ′′)n

(∏
xi

)n(θ′−θ′′)
. (7.285)

Obviously, the likelihood has monotone likelihood ratio (mlr) in the statistic∏
Xi because the ratio is a monotone function of

∏
Xi. (Explicitly the function

is increasing). With this and the hypotheses H0 : θ = θ′ and HA : θ < θ′ for
fixed θ′, the UMP level α decision rule for testing H0 versus H1 is given by

Reject H0 if Y =
∏

Xi ≤ cY . (7.286)

where cY is determined by α = Pθ′ [Y =
∏
Xi ≤ cY ]. This makes sense because

since the ratio is an increasing function in Y , we reject whenever the ratio is
small, which is when the product is small.
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